Skip to main content
Log in

Effects of Process Parameters on Deformation and Temperature Uniformity of Forged Ti-6Al-4V Turbine Blade

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This work is motivated by the frequent occurrence of macro- and microdefects within forged Ti-6Al-4V turbine blades due to the severely nonuniform strain and temperature distributions. To overcome the problem of nonuniformity during the blade forging operation, firstly, a 2D coupled thermo-mechanical finite element approach using the strain-compensated Arrhenius-type constitutive model is employed to simulate the real movements and processing conditions, and its reliability is verified experimentally. Secondly, two evaluation indexes, standard deviation of equivalent plastic strain and standard deviation of temperature, are proposed to evaluate the uniformity characteristics within the forged blade, and the effects of four process parameters including the forging velocity, friction factor, initial workpiece temperature and dwell time on the uniformity of strain and temperature distributions are carefully studied. Finally, the numerically optimized combination of process parameters is validated by the application in a practical process. The parametric study reveals that a reasonable combination of process parameters considering the flow resistance, flow localization and the effects of deformation and friction heating is crucial for the titanium alloy blade forging with uniformity. This work can provide a significant guidance for the design and optimization of blade forging processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

A :

Material constant of Arrhenius-type constitutive model

C :

Heat capacity

D :

Diameter of preform blade

E :

Young’s modulus

h :

Convection coefficient to environment

k :

Shear yield stress

K a :

Thermal conductivity

K h :

Heat transfer coefficient between workpiece and die

m :

Friction factor

n :

Material constant of Arrhenius-type constitutive model

\(n^{\prime}\) :

Material constant of Arrhenius-type constitutive model

N r :

Ratio of forged blade cross-section area to flash cross-section area

Q :

Activation energy of hot deformation

R :

Universal gas constant

S a :

Cross-section area of final forging blade without flash

S e :

Cross-section area of flash

S d :

Forging stroke of upper die

T :

Temperature

T d :

Initial temperature of die

T e :

Temperature of environment

T w :

Initial temperature of workpiece

v :

Forging velocity

Z :

Modified Zener-Hollomon parameter

α:

Material constant of Arrhenius-type constitutive model

αt :

Thermal expansion coefficient

β:

Material constant of Arrhenius-type constitutive model

ρ:

Density

τ:

Friction stress

σ:

Flow stress

μ:

Poisson’s ratio

η:

Emissivity

DT:

Dwell time before forging

SDP:

Standard deviation of equivalent plastic strain

SDT:

Standard deviation of temperature

References

  1. Y.L. Liu, H. Yang, M. Zhan, and Z.X. Fu, A Study of the Influence of the Friction Conditions on the Forging Process of a Blade with a Tenon, J. Mater. Process. Technol., 2002, 123(1), p 42–46

    Article  Google Scholar 

  2. S.J. Mirahmadi and M. Hamedi, Numerical and Experimental Investigation of Process Parameters in Non-isothermal Forward Extrusion of Ti-6Al-4V, Int. J. Adv. Manuf. Technol., 2014, 75(1–4), p 33–44

    Article  Google Scholar 

  3. H. Yang, M. Wang, L.G. Guo, and Z.C. Sun, 3D Coupled Thermo-Mechanical FE Modeling of Blank Size Effects on the Uniformity of Strain and Temperature Distributions During Hot Rolling of Titanium Alloy Large Rings, Comput. Mater. Sci., 2008, 44(2), p 611–621

    Article  Google Scholar 

  4. L.E. Murr, A.C. Ramirez, S.M. Gaytan, M.I. Lopez, E.Y. Martinez, D.H. Hernandez, and E. Martinez, Microstructure Evolution Associated with Adiabatic Shear Bands and Shear Band Failure in Ballistic Plug Formation in Ti-6Al-4V Targets, Mater. Sci. Eng., A, 2009, 516(1), p 205–216

    Article  Google Scholar 

  5. E. Alabort, D. Putman, and R.C. Reed, Superplasticity in Ti-6Al-4V: Characterisation, Modelling and Applications, Acta Mater., 2015, 95, p 428–442

    Article  Google Scholar 

  6. F. Cao, P. Kumar, M. Koopman, C. Lin, Z.Z. Fang, and K.R. Chandran, Understanding Competing Fatigue Mechanisms in Powder Metallurgy Ti-6Al-4V Alloy: Role of Crack Initiation and Duality of Fatigue Response, Mater. Sci. Eng., A, 2015, 630, p 139–145

    Article  Google Scholar 

  7. N.K. Park, J.T. Yeom, and Y.S. Na, Characterization of Deformation Stability in Hot Forging of Conventional Ti-6Al-4V Using Processing Maps, J. Mater. Process. Technol., 2002, 130, p 540–550

    Article  Google Scholar 

  8. G. Zhou, L. Hua, D.S. Qian, D.F. Shi, and H.X. Li, Effects of Axial Rolls Motions on Radial-Axial Rolling Process for Large-Scale Alloy Steel Ring with 3D Coupled Thermo-Mechanical FEA, Int. J. Mech. Sci., 2012, 59(1), p 1–7

    Article  Google Scholar 

  9. F. Chen, F.C. Ren, J. Chen, Z.S. Cui, and H.G. Ou, Microstructural Modeling and Numerical Simulation of Multi-physical Fields for Martensitic Stainless Steel During Hot Forging Process of Turbine Blade, Int. J. Adv. Manuf. Technol., 2015, doi:10.1007/s00170-015-7368-8

    Google Scholar 

  10. C.L. Hu, H.G. Ou, and Z. Zhao, An Alternative Evaluation Method for Friction Condition in Cold Forging by Ring with Boss Compression Test, J. Mater. Process. Technol., 2015, 224, p 18–25

    Article  Google Scholar 

  11. J.C. Wang, L. Langlois, M. Rafiq, R. Bigot, and H. Lu, Study of the Hot Forging of Weld Cladded Work Pieces Using Upsetting Tests, J. Mater. Process. Technol., 2014, 214, p 365–379

    Article  Google Scholar 

  12. B.S. Kang, N. Kim, and S. Kobayashi, Computer-Aided Preform Design in Forging of an Airfoil Section Blade, Int. J. Mach. Tools Manuf, 1990, 30(1), p 43–52

    Article  Google Scholar 

  13. H. Ou and R. Balendra, Preform Design for Forging of Aerofoil Sections Using FE Simulation, J. Mater. Process. Technol., 1998, 80, p 144–148

    Article  Google Scholar 

  14. M. Zhan, Y.L. Liu, and H. Yang, Influence of the Shape and Position of the Preform in the Precision Forging of a Compressor Blade, J. Mater. Process. Technol., 2002, 120, p 80–83

    Article  Google Scholar 

  15. H. Ou, C.G. Armstrong, and M.A. Price, Die Shape Optimisation in Forging of Aerofoil Sections, J. Mater. Process. Technol., 2003, 132(1), p 21–27

    Article  Google Scholar 

  16. B. Lu, H. Ou, C.G. Armstrong, and A. Rennie, 3D Die Shape Optimisation for Net-Shape Forging of Aerofoil Blades, Mater. Des., 2009, 30(7), p 2490–2500

    Article  Google Scholar 

  17. A. Kocańda, P. Czyżewski, and K.H. Mehdi, Numerical Analysis of Lateral Forces in a Die for Turbine Blade Forging, Arch. Civ. Mech. Eng., 2009, 9(4), p 49–54

    Article  Google Scholar 

  18. S.Y. Luo, D.H. Zhu, D.S. Qian, L. Hua, S.J. Yan, and J.J. Zhang, Effects of Friction Model on Forging Process of Ti-6Al-4V Turbine Blade Considering the Influence of Sliding Velocity, Int. J. Adv. Manuf. Technol., 2015, doi:10.1007/s00170-015-7538-8

    Google Scholar 

  19. Z.M. Hu, J.W. Brooks, and T.A. Dean, Three-Dimensional Finite Element Modelling of Forging of a Titanium Alloy Aerofoil Sectioned Blade, J. Manuf. Sci. Eng., 1999, 121(3), p 366–371

    Article  Google Scholar 

  20. V. Alimirzaloo, M.H. Sadeghi, and F.R. Biglari, Optimization of the Forging of Aerofoil Blade Using the Finite Element Method and Fuzzy-Pareto Based Genetic Algorithm, J. Mech. Sci. Technol., 2012, 26(6), p 1801–1810

    Article  Google Scholar 

  21. Y. Shao, B. Lu, H. Ou, and J. Chen, A New Approach of Preform Design for Forging of 3D Blade Based on Evolutionary Structural Optimization, Struct. Multidiscip. Optim., 2014, 51(1), p 199–211

    Article  Google Scholar 

  22. S.H.R. Torabi, S. Alibabaei, B.B. Bonab, M.H. Sadeghi, and G. Faraji, Design and Optimization of Turbine Blade Preform Forging Using RSM and NSGA II, J. Intell. Manuf., 2015, doi:10.1007/s10845-015-1058-0

    Google Scholar 

  23. J. Cai, K.S. Wang, P. Zhai, F.G. Li, and J. Yang, A Modified Johnson-Cook Constitutive Equation to Predict Hot Deformation Behavior of Ti-6Al-4V Alloy, J. Mater. Eng. Perform., 2015, 24(1), p 32–44

    Article  Google Scholar 

  24. J. Cai, F.G. Li, T.Y. Li, B. Chen, and M. He, Constitutive Equations for Elevated Temperature Flow Stress of Ti-6Al-4V Alloy Considering the Effect of Strain, Mater. Des., 2011, 32(3), p 1144–1151

    Article  Google Scholar 

  25. T. Altan, G. Ngaile, and G. Shen, Cold and Hot Forging: Fundamentals and Applications, ASM International, Materials Park, 2004

    Google Scholar 

  26. C. Lv, L. Zhang, Z.J. Mu, Q.G. Tai, and Q.Y. Zheng, 3D FEM Simulation of the Multi-stage Forging Process of a Gas Turbine Compressor Blade, J. Mater. Process. Technol., 2008, 198(1), p 463–470

    Article  Google Scholar 

  27. K.T. Kim and H.C. Yang, Densification Behavior of Titanium Alloy Powder During Hot Pressing, Mater. Sci. Eng., A, 2001, 313(1), p 46–52

    Article  Google Scholar 

  28. Y.C. Zhu, W.D. Zeng, X. Ma, Q.G. Tai, Z.H. Li, and X.G. Li, Determination of the Friction Factor of Ti-6Al-4V Titanium Alloy in Hot Forging by Means of Ring-Compression Test Using FEM, Tribol. Int., 2011, 44(12), p 2074–2080

    Article  Google Scholar 

  29. R.S. Lee and H.C. Lin, Process Design Based on the Deformation Mechanism for the Non-isothermal Forging of Ti-6Al-4V Alloy, J. Mech. Sci. Technol., 1998, 79(1), p 224–235

    Google Scholar 

  30. Z.C. Sun, H. Yang, and X.F. Guo, FE Analysis on Deformation and Temperature Nonuniformity in Forming of AISI-5140 Triple Valve by Multi-way Loading, J. Mater. Eng. Perform., 2013, 22(2), p 358–365

    Article  Google Scholar 

  31. H.Q. Yu and J.D. Chen, Principles of Metal Forming, China Machine Press, Beijing, 1999 (in Chinese)

    Google Scholar 

  32. X.G. Fan, H. Yang, and P.F. Gao, The Mechanism of Flow Softening in Subtransus Hot Working of Two-Phase Titanium Alloy with Equiaxed Structure, Chin. Sci. Bull., 2014, 59(23), p 2859–2867

    Article  Google Scholar 

  33. S.L. Semiatin and G.D. Lahoti, The Occurrence of Shear Bands in Nonisothermal, Hot Forging of Ti-6AI-2Sn-4Zr-2Mo-0.1Si, Mater. Trans. A, 1983, 14(1), p 105–115

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to gratefully acknowledge the financial support from the National Nature Science Foundation of China (Nos. 51675394, 51375196), the State Key Laboratory of Digital Manufacturing Equipment and Technology (No. DMETKF2016003), the grant from the High-end Talent Leading Program of Hubei Province (No. 2012-86) and the Key R&D Program of Jiangsu Province (No. BE2015005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dahu Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, S., Zhu, D., Hua, L. et al. Effects of Process Parameters on Deformation and Temperature Uniformity of Forged Ti-6Al-4V Turbine Blade. J. of Materi Eng and Perform 25, 4824–4836 (2016). https://doi.org/10.1007/s11665-016-2320-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2320-0

Keywords

Navigation