Skip to main content
Log in

Singularity-Free Trajectory Planning of a 3-RPRR Planar Kinematically Redundant Parallel Mechanism for Minimum Actuating Effort

  • Research paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Mechanical Engineering Aims and scope Submit manuscript

Abstract

Kinematic redundancy is a way to enlarge the workspace and to eliminate the singularities of parallel mechanisms. The objective of the present research is to introduce a new motion planning strategy for singularity avoidance and reducing the actuator forces, especially in the vicinity of singular configurations. The method is implemented to a planar kinematically redundant mechanism categorized as 3-RPRR type. Dynamic equations of motion are derived using the principle of virtual work, and the optimum inverse dynamics is obtained. Some numerical examples are solved, and the results are compared with those obtained in the counterpart non-redundant mechanisms. It is illustrated that the redundant mechanism can avoid singular configurations and track the given trajectory with feasible generalized forces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

a :

Dimension of the moving plate, Length of node pairs ppi (m)

b :

Length of node pairs OOi (m)

:

Length of the intermediate links (m)

\( {\mathbf{p}} \) :

Position vector of the center of the moving plate (m)

θ :

Orientation of the moving plate (rad)

θ i :

Angular position of the revolute actuators (rad)

d i :

Length of the prismatic actuators (m)

\( {\mathbf{A}}_{\theta } \) :

The rotation matrix from the moving plate to the reference frame

\( {\bar{\mathbf{u}}}_{p} \) :

Position vector of point, pi with respect to point p

\( {\mathbf{r}}_{pi} \) :

Position vector of point, pi

\( {\mathbf{r}}_{oi} \) :

Position vector of point, oi

\( {\mathbf{r}}_{bi} \) :

Position vector of point, bi

β i :

Orientation of the intermediate link (rad)

ω i :

Angular velocity of the intermediate links (rad/s)

α i :

Angular acceleration of the intermediate links (rad/s2)

\( {\mathbf{s}}_{i} \) :

Unit vector from point bi to pi

m p :

Mass of the moving plate (kg)

J p :

Inertia of the moving plate (kg m2)

J b :

Inertia of the prismatic actuators (kg m2)

F i :

Force of the ith prismatic actuator (N)

M i :

Moment of the ith revolute actuator (N m)

References

  • Abadi BN, Taghvaei S, Vatankhah R (2016) Optimal motion planning of a planar parallel manipulator with kinematically redundant degrees of freedom. Trans Can Soc Mech Eng 40(3):383

    Article  Google Scholar 

  • Assal SF (2015) A novel planar parallel manipulator with high orientation capability for a hybrid machine tool: kinematics, dimensional synthesis and performance evaluation. Robotica 1:1–23

    Google Scholar 

  • Bonev IA, Zlatanov D, Gosselin CM (2003) Singularity analysis of 3-DOF planar parallel mechanisms via screw theory. J Mech Des 125(3):573–581

    Article  Google Scholar 

  • Boudreau R, Nokleby S (2012) Force optimization of kinematically-redundant planar parallel manipulators following a desired trajectory. Mech Mach Theory 31(56):138–155

    Article  Google Scholar 

  • Carretero JA, Ebrahimi I, Boudreau R (2012) Overall motion planning for kinematically redundant parallel manipulators. J Mech Robot 4(2):024502

    Article  Google Scholar 

  • Cha SH, Lasky TA, Velinsky SA (2007) Singularity avoidance for the 3-RRR mechanism using kinematic redundancy. In: 2007 IEEE international conference on robotics and automation, IEEE, pp 1195–1200

  • Do Thanh T, Kotlarski J, Heimann B, Ortmaier T (2012) Dynamics identification of kinematically redundant parallel robots using the direct search method. Mech Mach Theory 30(52):277–295

    Article  Google Scholar 

  • Ebrahimi I, Carretero JA, Boudreau R (2007) Path planning for the 3-PRRR redundant planar parallel manipulator. In: Proceedings of the 2007 IFToMM world congress

  • Ebrahimi I, Carretero JA, Boudreau R (2007b) 3-PRRR redundant planar parallel manipulator: inverse displacement, workspace and singularity analyses. Mech Mach Theory 42(8):1007–1016

    Article  MathSciNet  Google Scholar 

  • Ebrahimi I, Carretero JA, Boudreau R (2008a) A family of kinematically redundant planar parallel manipulators. J Mech Des 130(6):062306

    Article  Google Scholar 

  • Ebrahimi I, Carretero JA, Boudreau R (2008b) Kinematic analysis and path planning of a new kinematically redundant planar parallel manipulator. Robotica 26(3):405–413

    Article  Google Scholar 

  • Fontes JV, da Silva MM (2016) On the dynamic performance of parallel kinematic manipulators with actuation and kinematic redundancies. Mech Mach Theory 30(103):148–166

    Article  Google Scholar 

  • Fontes J, Santos JC, da Silva MM (2014) Torque optimization of parallel manipulators by the application of kinematic redundancy. In: Conferência Nacional de Engenharia Mecânica-CONEM

  • Fontes JV, Santos JC, da Silva MM (2014) Optimization strategies for actuators of kinematically redundant manipulators to achieve high dynamic performance. In: 2014 joint conference on robotics: SBR-LARS robotics symposium and robocontrol (SBR LARS Robocontrol), IEEE, pp 31–36

  • Gosselin C, Angeles J (1990) Singularity analysis of closed-loop kinematic chains. IEEE Trans Robot Autom 6(3):281–290

    Article  Google Scholar 

  • Gosselin C, Schreiber LT (2016) Kinematically redundant spatial parallel mechanisms for singularity avoidance and large orientational workspace. IEEE Trans Robot 32(2):286–300

    Article  Google Scholar 

  • Isaksson M (2017) Kinematically redundant planar parallel mechanisms for optimal singularity avoidance. J Mech Des 139(4):042302

    Article  Google Scholar 

  • Isaksson M, Gosselin C, Marlow K (2016) An introduction to utilising the redundancy of a kinematically redundant parallel manipulator to operate a gripper. Mech Mach Theory 31(101):50–59

    Article  Google Scholar 

  • Jiang Y, Li TM, Wang LP (2015) Dynamic modeling and redundant force optimization of a 2-DOF parallel kinematic machine with kinematic redundancy. Robot Comput Integr Manuf 30(32):1

    Article  Google Scholar 

  • Kim J, Park C, Kim J, Park FC (2000) Performance analysis of parallel mechanism architectures for CNC machining applications. J Manuf Sci Eng 122(4):753–759

    Article  Google Scholar 

  • Kotlarski J, Abdellatif H, Heimann B (2008) Improving the pose accuracy of a planar 3RRR parallel manipulator using kinematic redundancy and optimized switching patterns. In: IEEE international conference on robotics and automation. ICRA 2008, IEEE, pp 3863–3868

  • Liu H, Huang T, Kecskeméthy A, Chetwynd DG, Li Q (2017) Force/motion transmissibility analyses of redundantly actuated and overconstrained parallel manipulators. Mech Mach Theory 31(109):126–138

    Article  Google Scholar 

  • Luces M, Mills JK, Benhabib B (2017) A review of redundant parallel kinematic mechanisms. J Intell Robot Syst 86(2):175–198

    Article  Google Scholar 

  • Mejia L, Simas H, Martins D (2016) Wrench capability in redundant planar parallel manipulators with net degree of constraint equal to four, five or six. Mech Mach Theory 105:58–79

    Article  Google Scholar 

  • Merlet JP (2006) Parallel robots. Springer, Berlin

    MATH  Google Scholar 

  • Mohamed MG, Gosselin CM (2005) Design and analysis of kinematically redundant parallel manipulators with configurable platforms. IEEE Trans Robot 21(3):277–287

    Article  Google Scholar 

  • Müller A (2013) On the terminology and geometric aspects of redundant parallel manipulators. Robotica 31(1):137–147

    Article  Google Scholar 

  • Ruggiu M, Carretero JA (2010) Actuation strategy based on the acceleration model for the 3-PRPR redundant planar parallel manipulator. Adv Robot Kinemat Motion Man Mach 1:91–98

    Article  Google Scholar 

  • Ruiz AG, Fontes J, da Silva MM (2015) The impact of kinematic and actuation redundancy on the energy efficiency of planar parallel kinematic machines. In: 17th international symposium on dynamic problems of mechanics, Natal, Brazil, pp 22–27

  • Wang J, Gosselin CM (2004) Kinematic analysis and design of kinematically redundant parallel mechanisms. Trans Am Soc Mech Eng J Mech Des 126(1):109–118

    Google Scholar 

  • Weihmann L, Martins D, Coelho LS, Bernert D (2011) Force capabilities of kinematically redundant planar parallel manipulators. In: 13th world congress in mechanism and machine science, p 483

  • Xie F, Liu XJ, Wang J (2011) Performance evaluation of redundant parallel manipulators assimilating motion/force transmissibility. Int J Adv Robot Syst 8(5):66

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahman Nouri Rahmat Abadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nouri Rahmat Abadi, B., Mahzoon, M. & Farid, M. Singularity-Free Trajectory Planning of a 3-RPRR Planar Kinematically Redundant Parallel Mechanism for Minimum Actuating Effort. Iran J Sci Technol Trans Mech Eng 43, 739–751 (2019). https://doi.org/10.1007/s40997-018-0234-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40997-018-0234-1

Keywords

Navigation