Skip to main content
Log in

Numerical Investigation of MHD Nanofluid Forced Convection in a Microchannel Using Lattice Boltzmann Method

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Mechanical Engineering Aims and scope Submit manuscript

Abstract

In this paper, flow and heat transfer of water–Al2O3 nanofluid in a two-dimensional microchannel that is under the influence of a uniform magnetic field is investigated. The thermal boundary conditions applied on the channel walls are constant temperature at the lower wall and insulated at the upper one. Lattice Boltzmann method is used to obtain the velocity and temperature fields. The effects of relevant parameters such as the Reynolds number (5–25), the nanoparticles volume fraction (0–4%) and the Hartmann number (0–10) are investigated on heat transfer coefficient and friction factor. The results show that the microchannel heat transfer performance is improved 19% by increasing the Reynolds number from 5 to 25. The magnetic field does not have remarkable effect on the heat transfer coefficient, but increases the friction factor up to 86%. Also, heat transfer coefficient enhances 17% by increasing the nanoparticles volume fraction up to 4%, but the rate of improvement in heat transfer coefficient decreases at higher Reynolds and Hartmann numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

B o :

Magnetic field strength (T)

c :

Experimental constant

C :

Microscopic lattice velocity

C f :

Friction coefficient

C p :

Specific heat (J/kg K)

C s :

Lattice sound speed

d :

Diameter (m)

e :

Microscopic velocity vector

F :

Dimensionless external force

f :

Density distribution function

f eq :

Equilibrium density distribution function

g :

Internal energy distribution function

g eq :

Equilibrium internal energy distribution function

H :

Microchannel height (m)

Ha :

Hartmann number

h :

Heat transfer coefficient (W/m2 K)

h ave :

Average heat transfer coefficient (W/m2 K)

k :

Thermal conductivity (W/m K)

L :

Microchannel length (m)

Nu :

Nusselt number

Pe :

Peclet number

Pr :

Prandtl number

Re :

Reynolds number

T :

Temperature (K)

t :

Time (s)

u, v :

Velocity components (m/s)

U, V :

Dimensionless velocity components

x, y :

Cartesian coordinates (m)

X, Y :

Dimensionless coordinates

α :

Lattice link number

χ :

Thermal diffusivity (m2/s)

ε :

Internal energy (J)

φ :

Nanoparticles volume fraction

μ :

Dynamic viscosity (N s/m2)

ρ :

Density (kg/m3)

v :

Kinematic viscosity (m2/s)

θ :

Dimensionless temperature

τ f , τ g :

Relaxation times for density and internal energy

ω :

Weight factor

in :

Input

f :

Pure fluid

m :

Mean

nf :

Nanofluid

s :

Nanoparticle

w :

Wall

References

  • Akbarinia A, Abdolzadeh M, Laur R (2011) Critical investigation of heat transfer enhancement using nanofluids in microchannels with slip and non-slip flow regimes. Appl Therm Eng 31:556–565

    Article  Google Scholar 

  • Aminfar H, Mohammadpourfard M, Mohseni F (2012) Two-phase mixture model simulation of the hydro-thermal behavior of an electrical conductive ferrofluid in the presence of magnetic fields. J Magn Magn Mater 324:830–842

    Article  Google Scholar 

  • Aminfar H, Mohammadpourfard M, AhangarZonouzi S (2013) Numerical study of the ferrofluid flow and heat transfer through a rectangular duct in the presence of a non-uniform transverse magnetic field. J Magn Magn Mater 327:31–42

    Article  Google Scholar 

  • Aminossadati SM, Raisi A, Ghasemi B (2011) Effects of magnetic field on nanofluid forced convection in a partially heated microchannel. Int J Non Linear Mech 46:1373–1382

    Article  Google Scholar 

  • Back LH (1968) Laminar heat transfer in electrically conducting fluids flowing in parallel plate channels. Int J Heat Mass Transf 11(11):1621–1636

    Article  MATH  Google Scholar 

  • Bandyopadhyay S, Layek GC (2012) Study of magnetohydrodynamic pulsatile flow in a constricted channel. Commun Nonlinear Sci Numer Simul 17(2434):2446

    MathSciNet  MATH  Google Scholar 

  • Bhatnagar PL, Gross EP, Krook M (1954) A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys Rev 94(3):511525

    Article  MATH  Google Scholar 

  • Chatterjee D, Amiroudine S (2011) Lattice Boltzmann simulation of thermofluidic transport phenomena in a DC magnetohydrodynamic (MHD) micropump. Biomed Microdevices 13:147–157

    Article  Google Scholar 

  • Choi SUS (1995) Enhancing thermal conductivity of fluids with nanoparticles. ASME Fluids Eng Div 231:99–105

    Google Scholar 

  • Deepa G, Murali G (2014) Effects of viscous dissipation on unsteady MHD free convective flow with thermophoresis past a radiate inclined permeable plate. Iran J Sci Technol 38A3(Special issue-Mathematics):379–388

    MathSciNet  Google Scholar 

  • D’Orazio A, Succi S (2004) Simulating two-dimensional thermal channel flows by means of a lattice Boltzmann method with new boundary conditions. Future Gener Comput Syst 20:935–944

    Article  Google Scholar 

  • Gokaltun S, Dulikravich GS (2010) Lattice Boltzmann computations of incompressible laminar flow and heat transfer in a constricted channel. Comput Math Appl 59:2431–2441

    Article  MathSciNet  MATH  Google Scholar 

  • Hung TC, Yan WM, Wang XD, Chang CY (2012) Heat transfer enhancement in microchannel heat sinks using nanofluids. Int J Heat Mass Transf 55:2559–2570

    Article  Google Scholar 

  • Kalteh M (2013) Investigating the effect of various nanoparticle and base liquid types on the nanofluids heat and fluid flow in a microchannel. Appl Math Model 37:8600–8609

    Article  MathSciNet  Google Scholar 

  • Kalteh M, Abbassi A, Saffar-Avval M, Frijns A, Darhuber A, Harting J (2012) Experimental and numerical investigation of nanofluid forced convection inside a wide microchannel heat sink. Appl Therm Eng 36:260–268

    Article  Google Scholar 

  • Karimipour A, HosseinNezhad A, D’Orazio A, Shirani E (2012) Investigation of the gravity effects on the mixed convection heat transfer in a microchannel using lattice Boltzmann method. Int J Therm Sci 54:142–152

    Article  Google Scholar 

  • Li Q, He YL, Tang GH, Tao WQ (2011) Lattice Boltzmann modeling of microchannel flows in the transition flow regime. Microfluid Nanofluidics 10:607–618

    Article  Google Scholar 

  • Makinde OD, Chinyoka T (2010) MHD transient flows and heat transfer of dusty fluid in a channel with variable physical properties and Navier slip condition. Comput Math Appl 60(3):660–669

    Article  MathSciNet  MATH  Google Scholar 

  • Mohammed HA, Gunnasegaran P, Shuaib NH (2011a) Influence of various base nanofluids and substrate materials on heat transfer in trapezoidal microchannel heat sinks. Int Commun Heat Mass Transf 38:194–201

    Article  Google Scholar 

  • Mohammed HA, Gunnasegaran P, Shuaib NH (2011b) The impact of various nanofluid types on triangular microchannels heat sink cooling performance. Int Commun Heat Mass Transf 38:767–773

    Article  Google Scholar 

  • Nguyen CT, Desgranges F, Galanis N, Roy G, Maré T, Boucher S, Mintsa HA (2008) Viscosity data for Al2O3—water nanofluid—hysteresis: is heat transfer enhancement using nanofluids reliable? Int J Therm Sci 47:103–111

    Article  Google Scholar 

  • Patel HE, Sundararajan T, Pradeep T, Dasgupta A, Dasgupta N, Das SK (2005) A micro-convection model for thermal conductivity of nanofluids. Pramana J Phys 65(5):863–869

    Article  Google Scholar 

  • Raisi A, Ghasemi B, Aminossadati SM (2011) A numerical study on the forced convection of laminar nanofluid in a microchannel with both slip and no-slip conditions. Numer Heat Transf Part A Appl 59(2):114–129

    Article  Google Scholar 

  • Sheikholeslami M, Hatami M, Ganji DD (2013a) Analytical investigation ofMHD nanofluid flow in a semi-porous channel. Powder Technol 246:327–336

    Article  Google Scholar 

  • Sheikholeslami M, Gorji-Bandpy M, Ganji DD (2013b) Numerical investigation of MHD effects on Al2O3—water nanofluid flow and heat transfer in a semi-annulus enclosure using LBM. Energy 60:501–510

    Article  Google Scholar 

  • Sheikholeslami M, Mustafa MT, Ganji DD (2015) Nanofluid flow and heat transfer over a stretching porous cylinder considering thermal radiation. Iran J Sci Technol 39A3(Special issue):433–440

    Google Scholar 

  • Tullius JF, Vajtai R, Bayazitoglu Y (2011) A review of cooling in microchannels. Heat Transf Eng 32(7–8):527–541

    Article  Google Scholar 

  • Yang YT, Lai FH (2011) Lattice Boltzmann simulation of heat transfer and fluid flow in a microchannel with nanofluids. Heat Mass Transf 47:1229–1240

    Article  Google Scholar 

  • Zhang J (2011) Lattice Boltzmann method for microfluidics: models and applications. Microfluid Nanofluidics 10:1–28

    Article  Google Scholar 

  • Zou Q, He X (1997) On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Phys Fluids 9:1591–1598

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Kalteh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalteh, M., Abedinzadeh, S.S. Numerical Investigation of MHD Nanofluid Forced Convection in a Microchannel Using Lattice Boltzmann Method. Iran J Sci Technol Trans Mech Eng 42, 23–34 (2018). https://doi.org/10.1007/s40997-017-0073-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40997-017-0073-5

Keywords

Navigation