Skip to main content
Log in

Viscous Shock Layer Around Slender Bodies with Nonequilibrium Air Chemistry

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Mechanical Engineering Aims and scope Submit manuscript

Abstract

A method has been developed which can reliably compute nonequilibrium viscous shock layer over blunt-nosed bodies. This method considerably improves computational efficiency, especially for long slender bodies. The shock shape is generated as a part of the solution in this method, and in the nose region, the shock shape is calculated from an algebraic relation and corrected by global passes through that region. The current algorithm yields a considerable decrease of more than 60% in CPU time relative to other VSL methods. In the present study, both seven and eleven species air models were tested. The seven species analysis includes N, O, N2, O2, NO, NO+ and e. The eleven species analysis includes the same species plus N+, O+, \(\text{N}_{2}^{ + }\), \(\text{O}_{2}^{ + }\). The chemical reaction models for seven and eleven species are taken from Blottner and Gupta, respectively. The governing equations are solved with a spatial-marching, implicit, finite-difference method. The solution is obtained by solving a couple of normal momentum and continuity equations. The results of the present technique show good agreement compared to the STS_2 flight data and other numerical solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Abbreviations

C i :

Mass fraction of species i, ρ i /ρ

C p :

Specific heat at constant pressure, \(C_{p}^{\text{*}} \text{/}C_{p\infty }^{\text{*}}\)

\(h\) :

Static enthalpy, \(h^{\text{*}} \text{/}V_{\infty }^{\text{2}}\)

h 1, h 3 :

Metrics

q :

Heating rate

\(J_{i}\) :

Diffusion mass flux of species i, \(J_{i}^{\text{*}} R_{\text{n}}^{\text{*}} \text{/}\mu_{{\text{ref}}}\)

k :

Thermal conductivity, \(k^{\text{*}} \text{/}\mu_{{\text{ref}}}^{\text{*}} C_{p\infty }^{\text{*}}\)

\(k_{{i\text{,}w}}\) :

Surface reaction rate coefficient, \(k_{{i\text{,}w}}^{\text{*}} \text{/}V_{\infty }\)

L e :

Lewis number

M :

Mach number

M i :

Molecular weight of species i

R n :

Body nose radius

\(R_{\text{u}}^{\text{*}}\) :

Universal gas constant

r :

Radius measured from axis of symmetry, \(r^{\text{*}} \text{/}R_{\text{n}}^{\text{*}}\)

s :

Coordinate measured along the shock wave, \(s^{\text{*}} \text{/}R_{\text{n}}^{\text{*}}\)

T :

Temperature, \(T^{\text{*}} C_{p\infty }^{\text{*}} \text{/}V_{\infty }^{\text{2}}\)

u :

Velocity components tangent to the shock, \(u^{\text{*}} \text{/}V_{\infty }^{\text{*}}\)

v :

Velocity component normal to the shock, \(v^{\text{*}} \text{/}V_{\infty }^{\text{*}}\)

ε :

Reynolds number parameter, \(\text{(}\mu_{{\text{ref}}} \text{/}\rho_{\infty }^{\text{*}} u_{\text{n}}^{\text{*}} R_{\text{n}}^{\text{*}} \text{)}^{{\text{1/2}}}\)

Γ, θ b :

Body angles

\(\eta_{n}\) :

Normalized n coordinate, 1 − n/n b

μ :

Viscosity, \(u^{\text{*}} \text{/}\mu_{{\text{ref}}}^{\text{*}}\) (\(\mu_{{\text{ref}}}^{\text{*}}\) is the coefficient of viscosity evaluated at T ref = \(V_{\infty }^{\text{2}} \text{/}C_{p\infty }^{{}}\))

ξ :

Normalized s coordinate, ξ = s

ρ :

Density, \(\rho^{*} /\rho_{\infty }\)

γ :

Catalytic recombination coefficient of species i

\(\dot{\omega }\) :

Mass rate of formation of species i, \(\dot{\omega }^{\text{*}} R_{\text{n}}^{\text{*}} \text{/}\rho_{\infty }^{\text{*}} V_{\infty }^{\text{*}}\)

i:

Species index

f:

Chemically frozen value

w:

Wall value

∞:

Free stream condition

*:

Dimensional quantities

b:

Body

ref:

Reference condition

References

Periodicals

  • Blottner FG (1969) Viscous shock layer at the stagnation point with nonequilibrium air chemistry. AIAA J 7(12):2281–2287

    Article  Google Scholar 

  • Davis RT (1970a) Numerical solution of the hypersonic viscous shock layer equations. AIAA J 8(5):843–851

    Article  MATH  Google Scholar 

  • Doihara R, Nishida M (2002) Thermochemical nonequilibrium viscous shock layer studies of the orbital reentry experiment (OREX) vehicle. Shock Waves 11(5):331–339

    Article  Google Scholar 

  • Ghasemloo S, Mani M (2009) Non-equilibrium viscous shock layer technique for computing hypersonic flow around blunt-nosed slender bodies. J Numerical Methods Heat Fluid Flow 19(5):574–594

    Article  Google Scholar 

  • Gupta RN, Lee KP, Zoby EV, Moss JN, Thompson RA (1990a) Hypersonic viscous shock-layer solutions over long slender bodies—Part I: high Reynolds number flows. J Spacecraft 27:175–184

    Article  Google Scholar 

  • Gupta RN (1996a) Viscous shock-layer study of thermochemical nonequilibrium. J Thermophys Heat Trans 10:257–266

    Article  Google Scholar 

  • Gupta RN (1996b) Reevaluation of flight-derived surface recombination-rate expression for oxygen and nitrogen. J Spacecr Rockets 33(3):451–453

    Article  Google Scholar 

  • Kim MD, Swaminathan S, Lewis CH (1984) Three dimensional nonequilibrium viscous flow over the space shuttle orbiter. J Spacecr Rockets 21:29–35

    Article  Google Scholar 

  • Mason EA, Saxena SC (1958) Approximate formula for the thermal conductivity of gas mixtures. Physic Fluids 3(5):361–369

    Article  MathSciNet  Google Scholar 

  • Mazaheri K, Shahbazi MR, Karimian SMH (2002) Numerical analysis of 2D high speed of real gases on an adaptive unstructured grid. Iran J Sci Technol Trans A Sci 26(B3):487–496

    MATH  Google Scholar 

  • Miller JH, Tannehill JC, Lawrence SL, Edwards TA (1998) Parabolized Navier–Stokes code for hypersonic flows in thermo-chemical equilibrium or nonequilibrium. J Comput Fluids 27(2):199–215

    Article  MATH  MathSciNet  Google Scholar 

  • Noori S, Karimian SMH (2008) Using axisymmetric analog along the streamlines for the solution of three-dimensional viscous shock layer equations of hypersonic equilibrium flow. Int J Comput Fluid Dyn 22(6)

  • Noori S, Karimian SMH, Malekzadeh M (2008) Numerical solution of three-dimensional viscous shock layer using axisymmetric analog along the streamlines. Int J Numerical Methods Heat Fluid Flow 18(1)

  • Noori S, Ghasemloo S, Mani M (2010) A new method for solution of viscous shock-layer equations. Proc. ImechE Part G: J Aerospace 224:719–729

    Google Scholar 

  • Olynick DR, Tiwari SB (1996) Navier–Stokes heating calculations for benchmark thermal protection system sizing. J Spacecr Rockets 33(6):807–814

    Article  Google Scholar 

  • Scott CD (1981) Catalytic recombination of oxygen and nitrogen in high temperature reusable surface insulation aerothermodynamics and planetary entry. In: Crosbie AL (ed) Progress in astrodynamics and aeronautics, vol 77. AIAA, New York, pp 192–212

    Google Scholar 

  • Scott CD (1985) Effects of nonequilibrium and wall catalysis on space shuttle heat transfer. J Spacecr Rockets 22:489–499

    Article  Google Scholar 

  • Wilke CR (1950) A viscosity equation for gas mixtures. J Chem Phys 18(4):517–519

    Article  Google Scholar 

Technical Reports

  • Evans JS, Schexnayder CJ, Huber PW (1973) Boundary-layer electron profiles for entry of a blunt slender body at high attitude. NASA TN D-7332

  • Gupta RN, Scott CD, Moss JN (1985) Slip-boundary equations for multicomponent nonequilibrium airflow. NASA TP-2452

  • Gupta RN, Yos JM, Thompson RA, Lee KP (1990b) A review of reaction rates and thermodynamic and transport properties for an 11-species air model for chemical and thermal nonequilibrium calculations to 30,000 °K. NASA Reference publication 1232

  • Kuchi-Ishi S (2005) The development of a new viscous shock-layer code for computing hypersonic flows around blunted body and its applications. Japan Aerospace Exploration Agency, JAXA-RR-05-001E

  • Lee KP, Gupta RN (1992) Viscous shock-layer analysis of hypersonic flows over long slender vehicles. NASA CR-189614

  • Miner EW, Lewis CH (1975) Hypersonic ionizing air viscous shock-layer flows over noncanalytic blunt bodies. NASA CR-2550

  • Moss JN (1974) Reacting viscous shock layer solutions with multicomponent diffusion and mass injection. NASA TR-R-411

  • Suzuki K, Kubota H, Fujita K, Abe T (1996) Numerical analysis of aerodynamic heating on MUSES-C reentry capsule. ISTS 96-d-25

  • Thompson RA, Lee KP, Gupta RN (1990) Computer codes for the evaluation of thermodynamic properties. transport properties, and equilibrium constants of an 11-species air model. NASA TM-102602

Papers from Conference Proceedings (Published)

  • Cheatwood FM, DeJarnette FR (1992) An approximate viscous shock layer technique for calculating nonequilibrium hypersonic flows about blunt-nosed bodies. AIAA-92-0498

  • Davis RT (1970b) Hypersonic flow of a chemically reacting binary mixture past a blunt body. AIAA-70-805

  • Gupta RN, Moss JN, Price JM (1996) Assessment of thermochemical nonequilibrium and slip effects for orbital reentry experiment (OREX). AIAA paper 96-1859

  • Kim MD, Swaminathan S, Lewis CH, (1983) Three dimensional viscous flow over the shuttle with surface catalytic effects. AIAA-83-1426

  • Kurotaki T (2000) Construction of catalytic model on SiO2-based surface and application to real trajectory. AIAA paper AIAA 2000-2366

  • Scalabrin LC, Boyd ID (2005) Development of an unstructured Navier-Stokes solver for hypersonic nonequilibrium aerothermodynamics. AIAA Paper 2005-5203

  • Shinn JL, Moss JN, Simmonds AL (1982) Viscous-shock-layer heating analysis for the shuttle windward plane with surface finite catalytic recombination rates. AIAA Paper AIAA-82-0842

Dissertations

  • Riley CJ (1992) An engineering method for interactive inviscid-boundary layers in three-dimensional hypersonic flows. Ph.D thesis, North Carolina State University

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Noori.

Appendix

Appendix

The coefficients for Eq. (20) are obtained as follows:

$$\begin{aligned} A_{c,j + 1/2} = & - \frac{{(h_{1} h_{3} )_{j + 1/2} }}{{\Delta \eta_{n,j + 1} }} \\ B_{c,j + 1/2} = & \frac{{(h_{1} h_{3} )_{j + 1/2} }}{{\Delta \eta_{n,j + 1} }} \\ C_{c,j + 1/2} = & \frac{{n_{b} h_{3,j + 1/2} u_{i,j + 1/2} }}{{2\Delta \xi_{i} P_{i,j + 1/2} }} - \frac{{h_{3j + 1/2} }}{{\Delta \eta_{n,j + 1} P_{i,j + 1/2} }}\left[ {(\eta_{n,j + 1/2} - 1)u_{i,j + 1/2} \frac{{\text{d}n_{b} }}{{\text{d}\xi }} + h_{1j + 1/2} V_{i,j + 1/2} } \right] \\ D_{c,j + 1/2} = & \frac{{n_{b} h_{3,j + 1/2} u_{i,j + 1/2} }}{{2\Delta \xi_{i} P_{i,j + 1/2} }} + \frac{{h_{3j + 1/2} }}{{\Delta \eta_{n,j + 1} P_{i,j + 1/2} }}\left[ {(\eta_{n,j + 1/2} - 1)u_{i,j + 1/2} \frac{{\text{d}n_{b} }}{{\text{d}\xi }} + h_{1j + 1/2} V_{i,j + 1/2} } \right] \\ E_{c,j + 1/2} = & \frac{{n_{b} h_{3,j + 1/2} u_{i,j + 1/2} }}{{2\Delta \xi_{i} P_{i,j + 1/2} }}(P_{i - 1,j + 1} + P_{i - 1,j} ) \\ & - \frac{{n_{b} h_{3,j + 1/2} }}{{2\Delta \xi_{i} }}\left( {u_{i,j + 1} + u_{i,j} - u_{i - 1,j + 1} - u_{i - 1,j} - \frac{{u_{i,j + 1/2} }}{{T_{i,j + 1/2} }} \times (T_{i,j + 1} + T_{i,j} - T_{i - 1,j + 1} - T_{i - 1,j} )} \right) \\ & - \frac{{n_{b} u_{i,j + 1/2} }}{{2\Delta \xi_{i} }}[(h_{3} )_{i,j + 1} + (h_{3} )_{i,j} - (h_{3} )_{i - 1,j + 1} - (h_{3} )_{i - 1,j} ] \\ & + V_{i,j + 1/2} \left[ {(h_{1} )_{j + 1/2} \left( {\frac{{\partial h_{3} }}{{\partial \eta_{n} }}} \right)_{j + 1/2} + (h_{3} )_{j + 1/2} \left( {\frac{{\partial h_{1} }}{{\partial \eta_{n} }}} \right)_{j + 1/2} } \right] \\ & - \frac{{V_{i,j + 1/2} (h_{1} h_{3} )_{j + 1/2} }}{{\Delta \eta_{n,j + 1} T_{i,j + 1/2} }}\left[ {T_{i,j + 1} - T_{i,j} } \right] \\ & + \frac{{n_{b} h_{3,j + 1/2} (\eta_{n,j + 1/2} - 1)}}{{\Delta \eta_{n,j + 1} }}\left[ {u_{i,j + 1} - u_{i,j} - \frac{{u_{i,j + 1/2} }}{{T_{i,j + 1/2} }}(T_{i,j + 1} - T_{i,j} )} \right] \\ & + (\eta_{n,j + 1/2} - 1)u_{i,j + 1/2} \frac{{\text{d}n_{b} }}{{\text{d}\xi }}\left( {\frac{{\partial h_{3} }}{{\partial \eta_{n} }}} \right)_{j + 1/2} \\ & - \frac{{u_{i,j + 1/2} h_{3,j + 1/2} n_{b} }}{{2\Delta \xi_{i} M_{i,j + 1/2} }}\left[ {M_{i,j + 1} + M_{i,j} - M_{i - 1,j + 1} - M_{i - 1,j} } \right] \\ & + \frac{{(h_{1} h_{3} )_{j + 1/2} V_{i,j + 1/2} }}{{\Delta \eta_{n,j + 1} M_{i,j + 1/2} }}\left[ {M_{i,j + 1} - M_{i,j} } \right] \\ & + \frac{{u_{i,j + 1/2} }}{{M_{i,j + 1/2} \Delta \eta_{n,j + 1} }}\frac{{\text{d}n_{b} }}{{\text{d}\xi }}h_{3j + 1/2} (\eta_{n,j + 1/2} - 1)\left[ {M_{i,j + 1} - M_{i,j} } \right] \\ \end{aligned}$$
$$\begin{aligned} & A_{nm,j + 1/2} = \frac{{n_{b} P_{i,j + 1/2} u_{i,j + 1/2} }}{{2\Delta \xi_{i} h_{1,j + 1/2} }} - \frac{{P_{i,j + 1/2} }}{{\Delta \eta_{n,j + 1} }}\left[ {\frac{{u_{i,j + 1/2} (\eta_{n,j + 1/2} - 1)}}{{h_{1,j + 1/2} }}\frac{{dn_{b} }}{d\xi } + V_{i,j + 1/2} } \right] \\ & B_{nm,i + 1/2} = \frac{{n_{b} P_{i,j + 1/2} u_{i,j + 1/2} }}{{2\Delta \xi_{i} h_{1,j + 1/2} }} + \frac{{P_{i,j + 1/2} }}{{\Delta \eta_{n,j + 1} }}\left[ {\frac{{u_{i,j + 1/2} (\eta_{n,j + 1/2} - 1)}}{{h_{1,j + 1/2} }}\frac{{dn_{b} }}{d\xi } + V_{i,j + 1/2} } \right] \\ & C_{nm,j + 1/2} = \frac{{ - R_{u} T_{i,j + 1/2} }}{{M_{i,j + 1/2} \Delta \eta_{n,j + 1} }} \\ & D_{nm,j + 1/2} = \frac{{ - R_{u} T_{i,j + 1/2} }}{{M_{i,j + 1/2} \Delta \eta_{n,j + 1} }} \\ & E_{nm} = \frac{{n_{b} P_{i,j + 1/2} u_{i,j + 1/2} }}{{2\Delta \xi_{i} h_{1,j + 1/2} }}(V_{i - 1,j + 1} + V_{i - 1,j} ) - \frac{{u^{2}_{i,j + 1/2} P_{i,j + 1/2} }}{{h_{1,j + 1/2} }}\left( {\frac{{\partial h_{1} }}{{\partial \eta_{n} }}} \right)_{j + 1/2} \\ \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noori, S., Ghasemloo, S. & Mani, M. Viscous Shock Layer Around Slender Bodies with Nonequilibrium Air Chemistry. Iran J Sci Technol Trans Mech Eng 41, 251–264 (2017). https://doi.org/10.1007/s40997-016-0062-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40997-016-0062-0

Keywords

Navigation