Skip to main content
Log in

Limit Analysis of Lateral Earth Pressure on Geosynthetic-Reinforced Retaining Structures Subjected to Strip Footing Loading Using Finite Element and Second-Order Cone Programming

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Civil Engineering Aims and scope Submit manuscript

Abstract

Stability of reinforced retaining structures under a variety of surficial loadings is of particular significance in geotechnical engineering practice. In the current study, adopting the well-established lower-bound limit analysis in conjunction with the finite element discretization method and second-order cone programming, a rigorous numerical study is carried out to evaluate the active lateral earth pressure on geosynthetic-reinforced retaining walls subjected to overlying strip footing loadings. The significant influence of the length (Le) and number (n) of reinforcement layers, load intensity (q), width of strip footing (B) and its distance from the wall (a) on the lateral earth pressure is examined. It is shown that using reinforcements longer than a specific length fails to have any further significant contributions to the wall stability. With the increase in load intensity and width of the strip footing, the reinforcements are found to be further effectual in reducing the rate of increase in the value of active earth pressure coefficient. Moreover, the reinforcements are observed to be more effective in enhancing the rate of decrease in the earth pressure coefficient with the increase in the foundation-wall distance, up to a threshold value, beyond which they show the reverse influence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

\(\left[ A \right]\) :

Matrix of linear constraints

\(a\) :

The distance between the surface footing and the retaining wall

\(\left\{ b \right\}\) :

Vector of linear constraints

\(B\) :

Width of strip footing

\(H\) :

Wall height

\(I\) :

Identity matrix

\(i\) :

Number of nodes

\(K_{{\text{a}}}\) :

Active pressure coefficient

\(L_{e}\) :

Length of reinforcement layers

\(n\) :

Number of reinforcement layers

\(P_{{\text{a}}}\) :

Total active earth thrust

\(q\) :

Load intensity

\(Q_{{\text{c}}}^{3}\) :

Cone quadratic (second-order) constraint

\(x\) :

Horizontal coordinate

\(y\) :

Vertical coordinate

\(z\) :

Nodal auxiliary variable

\(\alpha\) :

Angle of each edge with the x-axis

\(\gamma\) :

Soil unit weight

\(\delta_{{{\text{sw}}}}\) :

Soil–wall interface friction angle

\(\delta_{{{\text{sr}}}}\) :

Soil–reinforcement interface friction angle

\(\eta_{{\text{a}}}\) :

Active efficiency factor

\(\xi_{i} ,\eta_{i} ,\zeta_{i}\) :

Shape function coefficients

\(\sigma\) :

Normal stress

\(\tau\) :

Shear stress

\(\varphi\) :

Internal friction angle

\(\psi\) :

Dilation angle

References

  • Abu-Hejleh N, Zornberg JG, Wang T, Watcharamonthein J (2002) Monitored displacements of unique geosynthetic-reinforced soil bridge abutments. Geosynth Int 9(1):71–95

    Article  Google Scholar 

  • Adams M (1997) Performance of a prestrained geosynthetic reinforced soil bridge pier. Mechanically stabilized backfill, Balkema, Rotterdam, Netherlands, pp 35–53

  • Adams M, Nicks J, Stabile T, Wu J, Schlatter W, Hartmann J (2011) Geosynthetic reinforced soil integrated bridge system interim implementation guide. FHWA-HRT-11-026, U.S. Dept. of Transportation, Washington, DC

  • Ahmadi H, Bezuijen A (2018) Full-scale mechanically stabilized earth (MSE) walls under strip footing load. Geotext Geomembr 46(3):297–311

    Article  Google Scholar 

  • Ahmadi H, Hajialilue-Bonab M (2012) Experimental and analytical investigations on bearing capacity of strip footing in reinforced sand backfills and flexible retaining wall. Acta Geotech 7(4):357–373

    Article  Google Scholar 

  • Ahmadi H, Bezuijen A, Zornberg JG (2020) Interaction mechanisms in small-scale model MSE walls under the strip footing load. Geosynth Int (in press)

  • Allen TM, Bathurst RJ (2015) An improved simplified method for prediction of loads in reinforced soil walls. ASCE J Geotech Geoenviron Eng 141(11):04015049

    Article  Google Scholar 

  • Allen TM, Bathurst RJ (2019) Geosynthetic reinforcement stiffness characterization for MSE wall design. Geosynth Int 25(6):592–610

    Article  Google Scholar 

  • Anderheggen E, Knöpfel H (1972) Finite element limit analysis using linear programming. Int J Solids Struct 8(12):1413–1431

    Article  MATH  Google Scholar 

  • Andersen ED, Roos C, Terlaky T (2003) On implementing a primal-dual interior-point method for conic quadratic optimization. Math Program 95(2):249–277

    Article  MathSciNet  MATH  Google Scholar 

  • Ardah A, Abu-Farsakh M, Voyiadjis G (2017) Numerical evaluation of the performance of a Geosynthetic Reinforced Soil-Integrated Bridge System (GRS-IBS) under different loading conditions. Geotext Geomembr 45(6):558–569

    Article  Google Scholar 

  • Aroni Hesari S, Javankhoshdel S, Payan M, Jamshidi Chenari R (2021) Pseudo-static internal stability analysis of geosynthetic-reinforced earth slopes using horizontal slices method. Geomech Geoeng 19:1–26. https://doi.org/10.1080/17486025.2021.1940316

    Article  Google Scholar 

  • Basti TH, Chenari RJ, Payan M, Senetakis K (2021) Monotonic, cyclic and post-cyclic shearing behavior of sand-EPS geofoam interface. Geosynth Int 28(3):259–278. https://doi.org/10.1680/jgein.20.00041

    Article  Google Scholar 

  • Bathurst RJ (2020) Developments in MSE wall research and design. In: Tatsouka F, Guler E, Shehata H, Giroud J (eds) Innovative infrastructure solutions using Geosynthetics, GeoMEast 2019, Sustainable Civil Infrastructures. Springer, Cham, pp 22–50

    Google Scholar 

  • Bathurst RJ, Cai Z (1995) Pseudo-static seismic analysis of geosynthetic-reinforced segmental retaining walls. Geosynth Int 2(5):787–830

    Article  Google Scholar 

  • Bellezza I, D’Alberto D, Fentini R (2012) Pseudo-dynamic approach for active thrust of submerged soils. Proc Inst Civ Eng-Geotech Eng 165(5):321–333

    Article  Google Scholar 

  • Bourgeois E, Soyez L, Le Kouby A (2011) Experimental and numerical study of the behaviour of a reinforced-earth wall subjected to a local load. Comput Geotech 38(4):515–525

    Article  Google Scholar 

  • Cai Z, Bathurst RJ (1997) Seismic-induced permanent displacement of geosynthetic-reinforced segmental retaining walls. Can Geotech J 33(6):937–955

    Article  Google Scholar 

  • Chakraborty D, Kumar J (2014a) Bearing capacity of strip foundations in reinforced soils. Int J Geomech 14(1):45–58

    Article  Google Scholar 

  • Chakraborty M, Kumar J (2014b) Bearing capacity of circular foundations reinforced with geogrid sheets. Soils Found 54(4):820–832

    Article  Google Scholar 

  • Chakraborty D, Kumar J (2015) Bearing capacity of circular footings on reinforced soils. Int J Geomech 15(1):04014034

    Article  Google Scholar 

  • Chen WF (1975) Limit analysis and soil plasticity. Elsevier, Amsterdam

    MATH  Google Scholar 

  • Davis EH (1968) Theories of plasticity and failure of soil masses, chapter 6, soil-mechanics—selected topics, Ed. IK Lee

  • Drucker DC, Prager W, Greenberg HJ (1952) Extended limit design theorems for continuous media. Q Appl Math 9(4):381–389

    Article  MathSciNet  MATH  Google Scholar 

  • Fathipour H, Safardoost Siahmazgi AH, Payan M, Jamshidi Chenari R (2020) Evaluation of the lateral earth pressure in unsaturated soils with finite element limit analysis using second-order cone programming. Comput Geotech 125:103587

    Article  Google Scholar 

  • Fathipour H, Payan M, Jamshidi Chenari RJ (2021a) Limit analysis of lateral earth pressure on geosynthetic-reinforced retaining structures using finite element and second-order cone programming. Comput Geotech 134:104119

    Article  Google Scholar 

  • Fathipour H, Payan M, Jamshidi Chenari R, Senetakis K (2021b) Lower bound analysis of modified pseudo-dynamic lateral earth pressures for retaining wall-backfill system with depth-varying damping using FEM-Second order cone programming. Int J Numer Anal Meth Geomech. https://doi.org/10.1002/nag.3269

    Article  Google Scholar 

  • Fathipour H, Safardoost Siahmazgi A, Payan M, Veiskarami M, Jamshidi Chenari R (2021c) Limit analysis of modified pseudodynamic lateral earth pressure in anisotropic frictional medium using finite-element and second-order cone programming. Int J Geomech 21(2):04020258

    Article  Google Scholar 

  • Gotteland P, Gourc JP, Villard P (1997) Geosynthetic reinforced structures as bridge abutments: Full scale experimentation and comparison with modelisations. Mechanically stabilized backfill, Balkema, Rotterdam, Netherlands, pp 25–34

  • Greenberg HJ (1951) Limit design of beams and frames. In: Proceedings of the American society of civil engineers, vol 77, no 2, pp 1–12. ASCE.

  • Halder K, Chakraborty D (2018) Bearing capacity of strip footing placed on the reinforced soil slope. Int J Geomech 18(11):06018025

    Article  Google Scholar 

  • Halder K, Chakraborty D (2019a) Bearing capacity of a strip footing situated on reinforced cohesionless soil slope using non-associated flow rule. In: Geo-congress 2019: geotechnical materials, modeling, and testing. American Society of Civil Engineers, Reston, VA, pp 135–144

  • Halder K, Chakraborty D (2019b) Effect of interface friction angle between soil and reinforcement on bearing capacity of strip footing placed on reinforced slope. Int J Geomech 19(5):06019008

    Article  Google Scholar 

  • Halder K, Chakraborty D (2019c) Probabilistic bearing capacity of strip footing on reinforced soil slope. Comput Geotech 116:103213

    Article  Google Scholar 

  • Halder K, Chakraborty D (2019d) Seismic bearing capacity of strip footing placed on a reinforced slope. Geosynth Int 26(5):474–484

    Article  Google Scholar 

  • Halder K, Chakraborty D, Dash SK (2018) Seismic bearing capacity of a strip footing situated on soil slope using a non-associated flow rule in lower bound limit analysis. In: Geotechnical earthquake engineering and soil dynamics V: numerical modeling and soil structure interaction. American Society of Civil Engineers, Reston, VA, pp 454–463

  • Haza E, Gotteland P, Gourc JP (2000) Design method for local load on a geosynthetic reinforced soil structure. Geotech Geol Eng 18(4):243–267

    Article  Google Scholar 

  • Ho SK, Rowe RK (1996) Effect of wall geometry on the behavior of reinforced soil walls. Geotext Geomembr 14(10):521–541

    Article  Google Scholar 

  • Kazempour S, Chenari RJ, Ahmadi H, Payan M, Senetakis K (2021) Assessment of the compression characteristics and coefficient of lateral earth pressure of aggregate-expanded polystyrene beads composite fill-backfill using large oedometer experiments. Constr Build Mater 302:124145

    Article  Google Scholar 

  • Ketchart K, Wu JTH (1997) Performance of geosynthetic-reinforced soil bridge pier and abutment. In: Denver, Colorado, USA, special presentation, international symposium on mechanically stabilized backfill. A. A. Balkema Publishers, The Netherlands, pp 101–116

  • Khajeh A, Jamshidi Chenari R, Payan M (2020a) A simple review of cemented non-conventional materials: soil composites. Geotech Geol Eng 38(2):1019–1040

    Article  Google Scholar 

  • Khajeh A, Jamshidi Chenari R, Payan M (2020b) A review of the studies on soil-EPS composites: beads and blocks. Geotech Geol Eng 38:3363–3383. https://doi.org/10.1007/s10706-020-01252-2

    Article  Google Scholar 

  • Khajeh A, Ebrahimi SA, MolaAbasi H, Jamshidi Chenari R, Payan M (2021) Effect of EPS beads in lightening a typical zeolite and cement-treated sand. Bull Eng Geol Environ. https://doi.org/10.1007/s10064-021-02458-1

    Article  Google Scholar 

  • Khatri VN (2019) Determination of passive earth pressure with lower bound finite elements limit analysis and modified pseudo-dynamic method. Geomech Geoeng 14(3):218–229

    Article  Google Scholar 

  • Krabbenhøft K, Lyamin AV, Sloan SW (2008) Three-dimensional Mohr-Coulomb limit analysis using semidefinite programming. Commun Numer Methods Eng 24(11):1107–1119

    Article  MathSciNet  MATH  Google Scholar 

  • Lancellotta R (2007) Lower-bound approach for seismic passive earth resistance. Geotechnique 57(3):319–321

    Article  Google Scholar 

  • Lee KZZ, Wu JTH (2004) A synthesis of case histories on GRS bridge-supporting structures with flexible facing. Geotext Geomembr 22(4):181–204

    Article  Google Scholar 

  • Leshchinsky D, Leshchinsky B, Leshchinsky O (2017) Limit state design framework for geosynthetic-reinforced soil structures. Geotext Geomembr 45(6):642–652

    Article  Google Scholar 

  • Ling HI, Leshchinsky D, Perry EB (1997) Seismic design and performance of geosynthetic-reinforced soil structures. Geotechnique 47(5):933–952

    Article  Google Scholar 

  • Lyamin AV, Sloan SW (2002) Lower bound limit analysis using non-linear programming. Int J Numer Methods Eng 55(5):573–611

    Article  MATH  Google Scholar 

  • Lysmer J (1970) Limit analysis of plane problems in soil mechanics. J Soil Mech Found Div 96:1311–1334

    Article  Google Scholar 

  • Makrodimopoulos A, Martin CM (2006) Lower bound limit analysis of cohesive-frictional materials using second-order cone programming. Int J Numer Methods Eng 66(4):604–634

    Article  MATH  Google Scholar 

  • Michalowski RL (2004) Limit loads on reinforced foundation soils. J Geotech Geoenviron Eng 130(4):381–390

    Article  Google Scholar 

  • Mirmoazen SM, Lajevardi SH, Mirhosseini SM, Payan M, Jamshidi Chenari R (2021) Active lateral earth pressure of geosynthetic-reinforced retaining walls with inherently anisotropic frictional backfills subjected to strip footing loading. Comput Geotech 137:104302

    Article  Google Scholar 

  • Mirmoradi SH, Ehrlich M, Chinchay P, Dieguez C (2019) Evaluation of the combined effect of facing inclination and uniform surcharge on GRS walls. Geotext Geomembr 47(5):685–691

    Article  Google Scholar 

  • Nouzari MA, Jamshidi Chenari R, Payan M, Pishgar F (2021) Pseudo-static seismic bearing capacity of shallow foundations in unsaturated soils employing limit equilibrium method. Geotech Geol Eng 39(2):943–956

    Article  Google Scholar 

  • Pain A, Choudhury D, Bhattacharyya SK (2017) Effect of dynamic soil properties and frequency content of harmonic excitation on the internal stability of reinforced soil retaining structure. Geotext Geomembr 45(5):471–486

    Article  Google Scholar 

  • Rahmaninezhad SMM (2019) Geosynthetic-reinforced retaining walls with flexible facing subjected to footing loading. Doctoral dissertation, University of Kansas

  • Rahmaninezhad SM, Han J, Al-Naddaf M (2020) Limit equilibrium analysis of geosynthetic-reinforced retaining walls subjected to footing loading. In: Geo-congress 2020: engineering, monitoring, and management of geotechnical infrastructure. American Society of Civil Engineers, Reston, VA, pp 464–471

  • Romstad KM, Herrmann LR, Shen CK (1976) Integrated study of reinforced earth–I: theoretical formulation. J Geotech Geoenviron Eng 102(5):457–471

    Google Scholar 

  • Safardoost Siahmazgi A, Fathipour H, Jamshidi Chenari R, Veiskarami M, Payan M (2021) Evaluation of the pseudo-dynamic bearing capacity of surface footings on cohesionless soils using finite element lower bound limit analysis. Geomech Geoeng 1–13. https://doi.org/10.1080/17486025.2021.1889686

  • Shirmohammadi S, Ghaffarpour Jahromi S, Payan M, Senetakis K (2021) Effect of lime stabilization and partial clinoptilolite zeolite replacement on the behavior of a silt-sized low-plasticity soil subjected to freezing-thawing cycles. Coatings 11(8):994

    Article  Google Scholar 

  • Singh DN, Basudhar PK (1993) Determination of the optimal lower-bound-bearing capacity of reinforced soil-retaining walls by using finite elements and non-linear programming. Geotext Geomembr 12(7):665–686

    Article  Google Scholar 

  • Sloan SW (1988) Lower bound limit analysis using finite elements and linear programming. Int J Numer Anal Methods Geomech 12(1):61–77

    Article  MATH  Google Scholar 

  • Sloan SW (2013) Geotechnical stability analysis. Géotechnique 63(7):531

    Article  Google Scholar 

  • Steedman RS, Zeng X (1990) The influence of phase on the calculation of pseudo-static earth pressure on a retaining wall. Geotechnique 40(1):103–112

    Article  Google Scholar 

  • Talebi M, Meehan CL, Leshchinsky D (2017) Applied bearing pressure beneath a reinforced soil foundation used in a geosynthetic reinforced soil integrated bridge system. Geotext Geomembr 45(6):580–591

    Article  Google Scholar 

  • Ukritchon B (1998) Application of numerical limit analyses for undrained stability problems in clay. Doctoral dissertation, Massachusetts Institute of Technology

  • Ukritchon B, Keawsawasvong S (2018) Lower bound limit analysis of an anisotropic undrained strength criterion using second-order cone programming. Int J Numer Anal Methods Geomech 42(8):1016–1033

    Article  Google Scholar 

  • Ukritchon B, Keawsawasvong S (2019a) Three-dimensional lower bound finite element limit analysis of an anisotropic undrained strength criterion using second-order cone programming. Comput Geotech 106:327–344

    Article  Google Scholar 

  • Ukritchon B, Keawsawasvong S (2019b) Undrained stability of unlined square tunnels in clays with linearly increasing anisotropic shear strength. Geotech Geol Eng 38(1):897–915. https://doi.org/10.1007/s10706-019-01023-8

    Article  Google Scholar 

  • Ukritchon B, Keawsawasvong S (2019c) Lower bound solutions for undrained face stability of plane strain tunnel headings in anisotropic and non-homogeneous clays. Comput Geotech 112:204–217

    Article  Google Scholar 

  • Veiskarami M, Kumar J, Valikhah F (2014) Effect of the flow rule on the bearing capacity of strip foundations on sand by the upper-bound limit analysis and slip lines. Int J Geomech 14(3):04014008

    Article  Google Scholar 

  • Veiskarami M, Jamshidi Chenari R, Jameei AA (2017) Bearing capacity of strip footings on anisotropic soils by the finite elements and linear programming. Int J Geomech 17(12):04017119

    Article  Google Scholar 

  • Vidal H (1966) La terre Armee. Anales de l’Institute Technique du Batiment et des. Travaux Publiques, France, pp 888–938

    Google Scholar 

  • Vidal H (1969) The principle of reinforced earth. Highway Res Record (282)

  • Wu JTH, Ketchart K, Adams M (2001) GRS bridge piers and abutments. Rep. No. FHWA-RD-00-038, U.S. Dept. of Transportation, Washington, DC

  • Xiao C, Han J, Zhang Z (2016) Experimental study on performance of geosynthetic-reinforced soil model walls subjected to static footing loading. Geotext Geomembr 44(1):81–94

    Article  Google Scholar 

  • Xie Y, Leshchinsky B, Han J (2019) Evaluation of bearing capacity on geosynthetic-reinforced soil structures considering multiple failure mechanisms. J Geotech Geoenviron Eng 145(9):04019040

    Article  Google Scholar 

  • Xu P, Hatami K (2019) Sliding stability and lateral displacement analysis of reinforced soil retaining walls. Geotext Geomembr 47(4):483–492

    Article  Google Scholar 

  • Yu HS, Sloan SW (1997) Finite element limit analysis of reinforced soils. Comput Struct 63(3):567–577

    Article  MATH  Google Scholar 

  • Zornberg JG, Morsy AM, Mofarraj B, Christopher BR, Leshchinsky D, Han J, Tanyu BF, Gebremariam FT, Shen P, Jiang Y (2019) Proposed refinements to design procedures for geosynthetic reinforced soil (GRS) structures in AASHTO LRFD bridge design specifications. National Cooperative Highway Research Program (NCHRP), Project 24-41, Transportation Research Board, Washington DC, March, 64 p

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meghdad Payan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirmoazen, S.M., Lajevardi, S.H., Mirhosseini, S.M. et al. Limit Analysis of Lateral Earth Pressure on Geosynthetic-Reinforced Retaining Structures Subjected to Strip Footing Loading Using Finite Element and Second-Order Cone Programming. Iran J Sci Technol Trans Civ Eng 46, 3181–3192 (2022). https://doi.org/10.1007/s40996-021-00793-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40996-021-00793-7

Keywords

Navigation