Skip to main content
Log in

Effect of EPS beads in lightening a typical zeolite and cement-treated sand

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

The current study aims to assess the influence of EPS beads inclusion on the strength properties of stabilized poorly-graded sands. Various contents of zeolite and cement as stabilizing agents, with the total amounts of 4, 8, and 12% by dry soil weight, and also 0, 0.25, and 0.5% weight ratios of EPS beads (\(\eta\)) are examined. Zeolite is opted among a variety of pozzolanic materials so as to replace a part of cement (0, 10, 30, 50, 70, and 90%) due to its superior environmentally friendly properties. The stress–strain behavior, unconfined compressive strength (UCS), peak strain energy (Eu), and California bearing capacity (CBR) of the zeolite and cement-treated sand-EPS beads mixtures are investigated through several mechanical tests. Results showed that zeolite incorporation (with the optimum value of 30% replacement) improves the UCS and CBR values significantly and the reduction observed by the use of EPS beads is well-compensated. At \(\eta =0.25\%\), the peak strain energy is also enhanced. Active composition (AC), which refers to the minimum value of CaO or the sum of Al2O3 and SiO2 in the mixture, is suggested to render a unique power equation that can readily estimate the UCS and CBR values. It was concluded that the increase of AC and porosity (n) of the mixture, respectively, increases and decreases the strength parameters. Therefore, by the increase of n/AC ratio, the values of strength parameters diminish. Finally, with the aid of the presented power formulas, high-accuracy equations are proposed to correlate the UCS and CBR values of the samples to the key parameter (n/AC).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Ahmadi Chenarboni H, Lajevardi SH, MolaAbasi H, Zeighami E (2021) The effect of zeolite and cement stabilization on the mechanical behavior of expansive soils. Constr Build Mater 272:121630. https://doi.org/10.1016/j.conbuildmat.2020.121630

    Article  Google Scholar 

  • Akbari HR, Sharafi H, Goodarzi AR (2021) Effect of polypropylene fiber inclusion in kaolin clay stabilized with lime and nano-zeolite considering temperatures of 20 and 40 C. Bull Eng Geol Env 80(2):1841–1855. https://doi.org/10.1007/s10064-020-02028-x

    Article  Google Scholar 

  • Alaie R, Jamshidi Chenari R (2019) Dynamic properties of EPS beads-sand mixtures using large-scale cyclic triaxial and bender element tests. Geosynthetics International (ICE) 26(6):563–579. https://doi.org/10.1680/jgein.19.00034

    Article  Google Scholar 

  • Alaie R, Jamshidi Chenari R (2018) Cyclic and post-cyclic shear behaviour of interface between geogrid and EPS beads-sand backfill. KSCE J Civ Eng 22(9):3340–3357. https://doi.org/10.1007/s12205-018-0945-2

    Article  Google Scholar 

  • Alaie R, Jamshidi Chenari R, Karimpour-Fard M (2021) Shaking table study on sand-EPS beads-mixtures using a laminar box. Geosynth Int 28(3):224–237

  • Alrubaye AJ, Hasan M, Fattah MY (2018) Effects of using silica fume and lime in the treatment of kaolin soft clay. Geomech Geoeng 14(3):247–255. https://doi.org/10.12989/gae.2018.14.3.247

    Article  Google Scholar 

  • American Society for Testing and Materials (n.d.) Standard Test Methods for Specific Gravity of SoilSolids by Water Pycnometer. ASTM D854

  • American Society for Testing and Materials (n.d.) Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort. ASTMD698

  • American Society for Testing and Materials (n.d.) Standard test methods for particle-size distribution (Gradation) of soils using sieve analysis. ASTM D6913M - 17

  • American Society for Testing and Materials (n.d.) Standard test method for unconfined compressive strength of cohesive soil. ASTM D2166

  • American Society for Testing and Materials (n.d.) Standard test method for California bearing ratio (CBR) of laboratory-compacted soils. ASTM D1883

  • American Society for Testing and Materials (n.d.) Standard test method for particle-size analysis of soils. ASTM D422

  • American Society for Testing and Materials (n.d.) Standard test methods for maximum index density and unit weight of soils using a vibratory table. ASTM D4253

  • American Society for Testing and Materials (n.d.) Standard test methods for minimum index density and unit weight of soils and calculation of relative density. ASTM D4254

  • Beju YZ, Mandal JN (2019) California Bearing Ratio (CBR) Behaviors of EPS Geofoam: Experimental and Numerical Studies. In: Arellano D, Özer A, Bartlett S, Vaslestad J (eds) 5th International Conference on Geofoam Blocks in Construction Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-78981-1_15

  • Cincotti A, Mameli A, Locci AM, Orrù R, Cao G (2006) Heavy metals uptake by Sardinian natural zeolites: experiment and modeling. Ind Eng Chem Res 45(3):1074–1084. https://doi.org/10.1021/ie050375z

    Article  Google Scholar 

  • Consoli NC, Corte MB, Festugato L (2012) Key parameter for tensile and compressive strength of fibre-reinforced soil–lime mixtures. Geosynth Int 19(5):409–414. Thomas Telford Ltd. https://doi.org/10.1680/gein.12.00026

  • Consoli NC, Festugato L, da Rocha CG, Cruz RC (2013) Key parameters for strength control of rammed sand–cement mixtures: influence of types of portland cement. Constr Build Mater 49:591–597. https://doi.org/10.1016/j.conbuildmat.2013.08.062

    Article  Google Scholar 

  • Consoli NC, Foppa D, Festugato L, Heineck KS (2007) Key parameters for strength control of artificially cemented soils. Journal of Geotechnical and Geoenvironmental Engineering, American Society of Civil Engineers 133(2):197–205. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:2(197)

    Article  Google Scholar 

  • Consoli NC, da Silva Lopes L Jr, Heineck KS (2009a) Key parameters for the strength control of lime stabilized soils. J Mater Civ Eng 21(5):210–216. https://doi.org/10.1061/(ASCE)0899-1561(2009)21:5(210)

  • Consoli NC, da Silva Lopes L Jr, Foppa D, Heineck KS (2009b) Key parameters dictating strength of lime/cement-treated soils. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering 162(2):111–118. https://doi.org/10.1680/geng.2009.162.2.111

  • Diambra A, Festugato L, Ibraim E, da Silva AP, Consoli NC (2018) Modelling tensile/compressive strength ratio of artificially cemented clean sand. Soils Found 58(1):199–211. https://doi.org/10.1016/j.sandf.2017.11.011

    Article  Google Scholar 

  • Edinçliler A, Özer AT (2014) Effects of EPS bead inclusions on stress–strain behaviour of sand. Geosynth Int 21(2):89–102. https://doi.org/10.1680/gein.14.00001

    Article  Google Scholar 

  • Fakharian K, Eghbali AH, Heidari Golafzani S, Khanmohamadi M (2018) Specimen preparation methods for artificially cemented sand in simple shear and hollow cylinder apparatuses. Scientia Iranica 25(1):22–32. https://doi.org/10.24200/sci.2017.4177

    Article  Google Scholar 

  • Forcelini M, Garbin GR, Faro VP, Consoli NC (2016) Mechanical behavior of soil cement blends with Osorio sand. Procedia Engineering 143:75–81. https://doi.org/10.1016/j.proeng.2016.06.010

    Article  Google Scholar 

  • Gao HM, Li X, Wang ZH, Stuedlein AW, Wang Y (2019) Dynamic shear modulus and damping of expanded polystyrene composite soils at low strains. Geosynth Int 26(4):436–450. https://doi.org/10.1680/jgein.19.00029

    Article  Google Scholar 

  • Goodarzi AR, Akbari HR, Salimi M (2016) Enhanced stabilization of highly expansive clays by mixing cement and silica fume. Appl Clay Sci 132:675–684. https://doi.org/10.1016/j.clay.2016.08.023

    Article  Google Scholar 

  • Hakimi Basti T, Jamshidi Chenari R, Firoozfar A (2021a) Linear visco-elastic 1D site response of sand-EPS geofoam layers under cyclic loading. Geosynth Int 28(1):65–79. https://doi.org/10.1680/jgein.20.00028

    Article  Google Scholar 

  • Hakimi Basti T, Jamshidi Chenari R, Payan M, Senetakis K (2021b) Monotonic, cyclic and post-cyclic shearing behavior of sand-EPS geofoam interface. Geosynth Int 1–20. https://doi.org/10.1680/jgein.20.00041

  • Jafari SH, Lajevardi SH, Sharifipour M, Kamalian M (2021) Evaluation of small strain stiffness characteristics of soft clay treated with lime and nanosilica and correlation with UCS (qu). Bull Eng Geol Env 80(4):3163–3175. https://doi.org/10.1007/s10064-021-02115-7

    Article  Google Scholar 

  • Jafarpour P, Moayed RZ, Kordnaeij A (2020) Behavior of zeolite-cement grouted sand under triaxial compression test. J Rock Mech Geotech Eng 12(1):149–159. https://doi.org/10.1016/j.jrmge.2019.06.010

    Article  Google Scholar 

  • Janalizadeh Choobbasti A, Samakoosh MA, Kutanaei SS (2019) Mechanical properties soil stabilized with nano calcium carbonate and reinforced with carpet waste fibers. Constr Build Mater 211:1094–1104. https://doi.org/10.1016/j.conbuildmat.2019.03.306

    Article  Google Scholar 

  • Jamshidi Chenari R, Fatahi B, Ghorbani A, Nasiri Alamoti M (2018) Evaluation of strength properties of cement stabilized sand mixed with EPS beads and fly ash. Geomech Eng. https://doi.org/10.12989/gae.2018.14.6.533

  • Jamshidi Chenari R, Firoozfar A, Attari S, Izadi A, Shafiei SE (2017a) Deformation characteristics of sand geofoam blocks using large-scale oedometer apparatus. Civ Eng J 3(8):585–593. https://doi.org/10.28991/cej-2017-00000114

  • Jamshidi Chenari R, Karimpour Fard M, Maghfarati SP, Pishgar F, Machado SL (2016) An investigation on the geotechnical properties of sand–EPS mixture using large oedometer apparatus. Constr Build Mater 113:773–782. https://doi.org/10.1016/j.conbuildmat.2016.03.083

    Article  Google Scholar 

  • Jamshidi Chenari R, Khonachah RE, Hosseinpour I, Khajeh A (2020) An experimental study for the cyclic interface properties of the EPS–sand mixtures reinforced with geogrid. Int J Civ Eng 18(2):151–159. https://doi.org/10.1007/s40999-019-00424-3

    Article  Google Scholar 

  • Karimdad E, Bashirgonbadi M, Rahimi E (2021) A chemo-geotechnical approach to obtain optimal mixtures of zeolite-bentonite as heavy metal adsorbents. Bull Eng Geol Env 80(2):1193–1203. https://doi.org/10.1007/s10064-020-01984-8

    Article  Google Scholar 

  • Kazempour S, Jamshidi Chenari R, Ahmadi H, Payan M, Senetakis K (2021) Assessment of the compression characteristics and coefficient of lateral earth pressure of aggregate-expanded polystyrene beads composite fill-backfill using large oedometer experiments. Construct Build Mater 302:124145

    Article  Google Scholar 

  • Khajeh A, Jamshidi Chenari R, Payan M (2019) A simple review of cemented non-conventional materials: soil composites. Geotech Geol Eng 38:1019–1040. Springer. https://doi.org/10.1007/s10706-019-01090-x

  • Khajeh A, Jamshidi Chenari R, Payan M (2020) A review of the studies on soil-EPS composites: beads and blocks. Geotech Geol Eng 38:3363–3383. Springer. https://doi.org/10.1007/s10706-020-01252-2

  • Khaksar Najafi E, Chenari RJ, Payan M, Arabani M (2021a) A sustainable landfill liner material: clay-fly ash geopolymers. Bull Eng Geol Env 80(5):4111–4124

    Article  Google Scholar 

  • Khaksar Najafi E, Jamshidi Chenari R, Payan M, Arabani M (2021b) Compositional effects of clay–fly ash geopolymers on the sorption process of lead and zinc. J Environ Qual 50:768–781

    Article  Google Scholar 

  • Kordnaeij A, Moayed RZ, Soleimani M (2019) Unconfined compressive strength of loose sandy soils grouted with zeolite and cement. Soils Found 59(4):905–919. Elsevier. https://doi.org/10.1016/j.sandf.2019.03.012

  • Kordnaeij A, Ziaie Moayed R, Soleimani M (2019) Small strain shear modulus equations for zeolite–cement grouted sands. Geotech Geol Eng 37:5097–5111. Springer Science and Business Media LLC. https://doi.org/10.1007/s10706-019-00964-4

  • Ladd RS (1978) Preparing test specimens using undercompaction. Geotech Test J 1(1):16–23. https://doi.org/10.1520/GTJ10364J

    Article  Google Scholar 

  • Liu J, Bu F, Bai Y, Chen Z, Kanungo DP, Song Z, Chen J (2020) Study on engineering properties of sand strengthened by mixed fibers and polyurethane organic polymer. Bull Eng Geol Environ 1–14. https://doi.org/10.1007/s10064-020-01751-9

  • Liu HL, Zhu YH, Dong JM (2007) Laboratory study of permeability of lightweight soil with EPS under different consolidation pressures. Yantu Lixue (Rock Soil Mech) 28(11):2333–2336

    Google Scholar 

  • Miao L, Wang F, Han J, Lv W, Li J (2012) Properties and applications of cement-treated sand-expanded polystyrene bead lightweight fill. J Mater Civ Eng 25(1):86–93. American Society of Civil Engineers. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000556

  • MolaAbasi H, Khajeh A, Naderi Semsani S (2018) Effect of the ratio between porosity and SiO2 and Al2O3 on tensile strength of zeolite-cemented sands. J Mater Civ Eng 30(4):4018–4028. American Society of Civil Engineers. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002197

  • MolaAbasi, H. (2016) Laboratory investigation on mechanical behavior of behavior of babolsar sand stabilized with cement and zeolite. Ph D Dissertation; Babol Noshirvani University of Technology, Babol, Iran

  • MolaAbasi H, Khajeh A, Naderi Semsani S (2017) Porosity/(SiO2 and Al2O3 particles) ratio controlling compressive strength of zeolite-cemented sands. Geotech Geol Eng 36:949–958. https://doi.org/10.1007/s10706-017-0367-9

    Article  Google Scholar 

  • MolaAbasi H, Saberian M, Li J (2019) Prediction of compressive and tensile strengths of zeolite-cemented sand using porosity and composition. Construct Build Mater 202:784–795. Elsevier. https://doi.org/10.1016/j.conbuildmat.2019.01.065

  • MolaAbasi H, Semsani SN, Saberian M, Khajeh A, Li J, Harandi M (2020) Evaluation of the long-term performance of stabilized sandy soil using binary mixtures: a micro-and macro-level approach. J Clean Prod. 267. Elsevier

  • Ören AH, Kaya A, Kayalar AŞ (2011) Hydraulic conductivity of zeolite–bentonite mixtures in comparison with sand–bentonite mixtures. Can Geotech J 48(9):1343–1353. NRC Research Press. https://doi.org/10.1139/t11-042

  • Padade AH, Mandal JN (2014) Expanded polystyrene-based geomaterial with fly ash. Int J Geomech 14(6):06014013. American Society of Civil Engineers. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000390

  • Puppala AJ, Ruttanaporamakul P, Congress SSC (2019) Design and construction of lightweight EPS geofoam embedded geomaterial embankment system for control of settlements. Geotext Geomembr 47(3):295–305. Elsevier. https://doi.org/10.1016/j.geotexmem.2019.01.015

  • Rezaie B, Jamshidi Chenari R, Veiskarami M (2020) A Study on the effect of cement treatment on the behavior of EPS composite soils. Geotech Geol Eng 38:5475–5487

    Article  Google Scholar 

  • Salimi M, Ghorbani A (2020) Mechanical and compressibility characteristics of a soft clay stabilized by slag-based mixtures and geopolymers. Appl Clay Sci 184:105390. https://doi.org/10.1016/j.clay.2019.105390

    Article  Google Scholar 

  • Şenol A (2012) Effect of fly ash and polypropylene fibres content on the soft soils. Bull Eng Geol Env 71(2):379–387. https://doi.org/10.1007/s10064-011-0391-6

    Article  Google Scholar 

  • Shirmohammadi S, Ghaffarpour Jahromi S, Payan M, Senetakis K (2021) Effect of lime stabilization and partial clinoptilolite zeolite replacement on the behavior of a silt-sized low-plasticity soil subjected to freezing–thawing cycles. Coatings 11(8):994

    Article  Google Scholar 

  • Silvani C, Lucena LCDFL, Guimarães Tenorio EA, Filho HCS, Consoli NC (2020) Key parameter for swelling control of compacted expansive fine-grained soil-lime blends. J Geotech Geoenviron Eng 146(9):6020012. American Society of Civil Engineers. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002335

  • Tam VW, Tam CM, Wang Y (2007) Optimization on proportion for recycled aggregate in concrete using two-stage mixing approach. Construct Build Mater 21(10):1928–1939. Elsevier. https://doi.org/10.1016/j.conbuildmat.2006.05.040

  • Teymur B, Tuncel EY, Ahmedov R (2013) Comparing the properties of EPS and glass foam mixed with cement and sand. Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering (ICSMGE), Paris 2013

  • Tizpa PR, Jamshidi Chenari, Farrokhi F (2019a) A note on the compressibility and earth pressure properties of EPS beads-rigid particulates composite. Geotech Geol Eng 37:5231–5243. https://doi.org/10.1007/s10706-019-00977-z

  • Tizpa P, Jamshidi Chenari R, Farrokhi F (2020) Constraint compression behavior of sand-EPS beads mixture using discrete element modelling (DEM). Adv Civ Eng Mater 9(1):666–682. https://doi.org/10.1520/ACEM20190162

    Article  Google Scholar 

  • Tizpa P, Kazempour S, Jamshidi Chenari R, Farrokhi F, Ahmadi H (2019b) Numerical and experimental investigations of the influence of grain size on the compressibility of sand-EPS mixtures. Int J Geosyn Gr Imp 5(4):1–7. Springer. https://doi.org/10.1007/s40891-019-0182-x

  • Tran KQ, Satomi T, Takahashi H (2018) Improvement of mechanical behavior of cemented soil reinforced with waste cornsilk fibers. Construct Build Mater 178:204–210. Elsevier. https://doi.org/10.1016/j.conbuildmat.2018.05.104

  • Wang F, Miao L (2009) A proposed lightweight fill for embankments using cement-treated Yangzi River sand and expanded polystyrene (EPS) beads. Bull Eng Geol Env 68(4):517–524. https://doi.org/10.1007/s10064-009-0228-8

    Article  Google Scholar 

  • Wingenfelder U, Hansen C, Furrer G, Schulin R (2005) Removal of heavy metals from mine waters by natural zeolites. Environ Sci Technol 39(12):4606–4613. ACS Publications. https://doi.org/10.1021/es048482s

  • Yaghoubi E, Arulrajah A, Yaghoubi M, Horpibulsuk S (2020) Shear strength properties and stress-strain behavior of waste foundry sand. Construct Build Mater 249. Elsevier

  • Yang J, Gao X, Li J, Zuo R, Wang J, Song L, Wang G (2020) The stabilization process in the remediation of vanadium-contaminated soil by attapulgite, zeolite and hydroxyapatite. Ecol Eng 156. Elsevier

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Jamshidi Chenari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khajeh, A., Ebrahimi, S.A., MolaAbasi, H. et al. Effect of EPS beads in lightening a typical zeolite and cement-treated sand. Bull Eng Geol Environ 80, 8615–8632 (2021). https://doi.org/10.1007/s10064-021-02458-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-021-02458-1

Keywords

Navigation