Skip to main content
Log in

On the Micromechanics of True Triaxial Test, Insights from 3D DEM Study

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Civil Engineering Aims and scope Submit manuscript

Abstract

In this paper, three dimensional discrete element method simulations of true triaxial test are presented. During simulations, the major, the intermediate and the minor principal strains are monitored to maintain the b-value constant. The effect of intermediate principal stress on the frictional parameters of granular materials is studied. Furthermore, the micromechanics of samples using the Stress–Force–Fabric (SFF) relationship is investigated. The SFF relationship is comprised of anisotropy tensors of fabric, contact normal and tangential forces. Results show that, the mobilized friction angles in simulations with different b-values have very good agreements with results of the so-called general stress tensors, which are made of force and position vectors at contact points. It is observed that the evolution of anisotropy in the sample is at the origin of different responses of granular materials in macro scale. The frictional properties of granular materials is observed sensitive to the intermediate principal stress both at macro and grain scale. Our observations highlight the important role of intermediate principal stress, and are consistent with experimental studies of true triaxial tests on granular materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

\( a_{d}^{n} \) :

Deviatoric coefficient of normal contact force anisotropy

\( a_{ij}^{n} \) :

Normal contact force anisotropy tensor

\( a_{d}^{r} \) :

Deviatoric coefficient of fabric anisotropy

\( a_{i}^{r} \) :

Principal coefficients of fabric anisotropy

\( a_{ij}^{r} \) :

Fabric anisotropy tensor

\( a_{d}^{t} \) :

Deviatoric coefficient of tangential contact force anisotropy

\( a_{ij}^{t} \) :

Tangential contact force anisotropy tensor

c :

Contact point for two particles

\( {\text{d}}\varOmega ,\Delta \varOmega \) :

Orientation interval

\( E\left( \varOmega \right) \) :

Distribution function of contact normal

\( \bar{f}_{0} \) :

Average normal contact force

\( f_{i}^{c} \) :

Force vector

\( \bar{f}^{n} \left( \varOmega \right) \) :

Distribution function of average normal contact force

\( F_{ij}^{n} \) :

Normal contact force tensor

\( F_{ij}^{{{\prime }n}} \) :

Deviator normal contact force tensor

\( \bar{f}_{i}^{t} \left( \varOmega \right) \) :

Distribution function of tangential contact forces

\( \bar{f}^{t} \left( \varOmega \right) \) :

Tangential contact forces magnitude

\( F_{ij}^{t} \) :

Tangential contact force tensor

\( F_{ij}^{{{\prime }t}} \) :

Deviator tangential contact force tensor

\( \bar{l}_{0} \) :

The averaged contact length for all contacts

\( l_{j}^{c} \) :

Position vector

\( m_{V} \) :

Assembly contact density

\( n_{i} \) :

Contact normal component

\( R_{ij} \) :

Fabric tensor

\( R_{ij}^{{\prime }} \) :

Deviator fabric tensor

V :

Volume of assembly

\( \alpha \) :

Horizontal angle in spherical coordination system

\( \beta \) :

Vertical angle in spherical coordination system

\( \gamma \) :

Coordination number

\( \delta_{ij} \) :

Unit matrix

\( \varepsilon_{\text{a}} \) :

Axial strain

\( \varepsilon_{\text{V}} \) :

Volumetric strain

\( \sigma_{1} \) :

Major principal stress

\( \sigma_{2} \) :

Intermediate principal stress

\( \sigma_{3} \) :

Minor principal stress

\( \sigma_{ij} \) :

Stress tensor

\( \sigma_{\text{v}} \) :

Vertical stress on cubic cell

\( \sigma_{h}^{a} \) :

First horizontal stress on cubic cell

\( \sigma_{h}^{b} \) :

Second horizontal stress on cubic cell

\( \varphi^{^\circ } \) :

Residual friction angle

\( \varphi_{\hbox{max} }^{^\circ } \) :

Maximum of friction angle

\( \phi_{\text{mobilized}} \) :

Mobilized friction angle

\( \varOmega \) :

Small fraction on spherical coordinate system surface

\( \varOmega^{\text{g}} \) :

Partitioned group of unit sphere

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Asghar Mirghasemi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dorostkar, O., Mirghasemi, A.A. On the Micromechanics of True Triaxial Test, Insights from 3D DEM Study. Iran J Sci Technol Trans Civ Eng 42, 259–273 (2018). https://doi.org/10.1007/s40996-018-0102-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40996-018-0102-7

Keywords

Navigation