Skip to main content
Log in

Estimation and Optimization for Step-Stress Accelerated Degradation Tests Under an Inverse Gaussian Process with Tampered Degradation Model

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions A: Science Aims and scope Submit manuscript

Abstract

This paper addresses the estimation and optimization problems for a step-stress accelerated degradation test (SSADT) when a product’s degradation follows an inverse Gaussian (IG) process. Developing a link model to connect the deterioration measurements at different stress levels is a primary concern for this design issue. In this paper, we propose a tampered degradation model and construct a new framework to model the effect of changing stress from a level to another on the degradation path. Parameter estimates are obtained by both maximum likelihood and Bayesian methods. Under the constraint that the total experimental cost does not exceed a pre-specified budget, the optimal settings such as sample size, measurement frequency, and the number of measurements at each stress level are obtained. Finally, a real-world example is analyzed to illustrate the application of the proposed method. A notable finding was that enlarging the difference between the two stress levels makes the test more efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availibility Statement

Datasets published in the Yang, G. (2007). Life cycle reliability engineering. John Wiley & Sons.

References

  • Azizi F, Haghighi F, Ghadiri E, Torabi L (2017) Statistical inference for masked interval data with Weibull distribution under simple step-stress test and tampered failure rate model. Proc Inst Mech Eng Part O J Risk Reliab 231(6):654–665

    Google Scholar 

  • Bae SJ, Kuo W, Kvam PH (2007) Degradation models and implied lifetime distributions. Reliab Eng Syst Saf 92(5):601–608

    Article  Google Scholar 

  • Bagdonavicius V, Nikulin M (2001) Accelerated life models: modeling and statistical analysis. CRC Press, Boca Raton

    Book  Google Scholar 

  • Bhattacharyya GK, Soejoeti Z (1989) A tampered failure rate model for step-stress accelerated life test. Commun Stat Theory Methods 18(5):1627–1643

    Article  MathSciNet  Google Scholar 

  • Deep K, Singh KP, Kansal ML, Mohan C (2009) A real coded genetic algorithm for solving integer and mixed integer optimization problems. Appl Math Comput 212(2):505–518

    MathSciNet  MATH  Google Scholar 

  • DeGroot MH, Goel PK (1979) Bayesian estimation and optimal designs in partially accelerated life testing. Nav Res Logist Q 26(2):223–235

    Article  MathSciNet  Google Scholar 

  • Doksum KA, Hbyland A (1992) Models for variable-stress accelerated life testing experiments based on wener processes and the inverse gaussian distribution. Technometrics 34(1):74–82

    Article  Google Scholar 

  • Duan F, Wang G (2018) Optimal step-stress accelerated degradation test plans for inverse Gaussian process based on proportional degradation rate model. J Stat Comput Simul 88(2):305–328

    Article  MathSciNet  Google Scholar 

  • Haghighi F, Bae SJ (2015) Reliability estimation from linear degradation and failure time data with competing risks under a step-stress accelerated degradation test. IEEE Trans Reliab 64(3):960–971

    Article  Google Scholar 

  • Hao S, Yang J, Berenguer C (2018) Nonlinear step-stress accelerated degradation modelling considering three sources of variability. Reliab Eng Syst Saf 172:207–215

    Article  Google Scholar 

  • He D, Wang Y, Chang G (2018) Objective Bayesian analysis for the accelerated degradation model based on the inverse Gaussian process. Appl Math Model 61:341–350

    Article  MathSciNet  Google Scholar 

  • Hu CH, Lee MY, Tang J (2015) Optimum step-stress accelerated degradation test for Wiener degradation process under constraints. Eur J Oper Res 241(2):412–421

    Article  MathSciNet  Google Scholar 

  • Johnson NL, Kotz S, Balakrishnan N (1994) Continuous univariate distributions, vol 1. John Wiley & sons, Hoboken

    MATH  Google Scholar 

  • Liao CM, Tseng ST (2006) Optimal design for step-stress accelerated degradation tests. IEEE Trans Reliab 55(1):59–66

    Article  Google Scholar 

  • Ling MH, Hu XW (2020) Optimal design of simple step-stress accelerated life tests for one-shot devices under Weibull distributions. Reliab Eng Syst Saf 193:106630

    Article  Google Scholar 

  • Lu CJ, Meeker WO (1993) Using degradation measures to estimate a time-to-failure distribution. Technometrics 35(2):161–174

    Article  MathSciNet  Google Scholar 

  • Ma Z, Wang S, Liao H, Zhang C (2019) Engineering-driven performance degradation analysis of hydraulic piston pump based on the inverse Gaussian process. Qual Reliab Eng Int 35(7):2278–2296

    Google Scholar 

  • Ma Z, Liao H, Ji H, Wang S, Yin F, Nie S (2021) Optimal design of hybrid accelerated test based on the inverse Gaussian process model. Reliab Eng Syst Saf 107509

  • Meeker WQ, Escobar LA (2014) Statistical methods for reliability data. John Wiley & Sons, Hoboken

    MATH  Google Scholar 

  • Meeker WQ, Escobar LA, Lu CJ (1998) Accelerated degradation tests: modeling and analysis. Technometrics 40(2):89–99

    Article  Google Scholar 

  • Mosayebi Omshi E, Shemehsavar S (2019) Optimal design for accelerated degradation test based on D-optimality. Iran J Sci Technol Trans A Sci 43(4):1811–1818

    Article  MathSciNet  Google Scholar 

  • Nelson W (1980) Accelerated life testing-step-stress models and data analyses. IEEE Trans Reliab 29(2):103–108

    Article  Google Scholar 

  • Nelson WB (2009) Accelerated testing: statistical models, test plans, and data analysis, vol 344. John Wiley & Sons, Hoboken

    Google Scholar 

  • Peng W, Liu Y, Li YF, Zhu SP, Huang HZ (2014) A Bayesian optimal design for degradation tests based on the inverse Gaussian process. J Mech Sci Technol 28(10):3937–3946

    Article  Google Scholar 

  • Shi Y, Meeker WQ (2011) Bayesian methods for accelerated destructive degradation test planning. IEEE Trans Reliab 61(1):245–253

    Article  Google Scholar 

  • Sung SI, Yum BJ (2016) Optimal design of step-stress accelerated degradation tests based on the Wiener degradation process. Qual Technol Quant Manag 13(4):367–393

    Article  Google Scholar 

  • Tsai CC, Tseng ST, Balakrishnan N (2012) Optimal design for degradation tests based on gamma processes with random effects. IEEE Trans Reliab 61(2):604–613

    Article  Google Scholar 

  • Tseng ST, Wen ZC (2000) Step-stress accelerated degradation analysis for highly reliable products. J Qual Technol 32(3):209–216

    Article  Google Scholar 

  • Tseng ST, Balakrishnan N, Tsai CC (2009) Optimal step-stress accelerated degradation test plan for gamma degradation processes. IEEE Trans Reliab 58(4):611–618

    Article  Google Scholar 

  • Wang X, Xu D (2010) An inverse Gaussian process model for degradation data. Technometrics 52(2):188–197

    Article  MathSciNet  Google Scholar 

  • Wang H, Wang GJ, Duan FJ (2016) Planning of step-stress accelerated degradation test based on the inverse Gaussian process. Reliab Eng Syst Saf 154:97–105

    Article  Google Scholar 

  • Wang Y, Chen X, Tan Y (2017) Optimal design of step-stress accelerated degradation test with multiple stresses and multiple degradation measures. Qual Reliab Eng Int 33(8):1655–1668

    Article  Google Scholar 

  • Wu JP, Kang R, Li XY (2020) Uncertain accelerated degradation modeling and analysis considering epistemic uncertainties in time and unit dimension. Reliab Eng Syst Saf 201:106967

    Article  Google Scholar 

  • Yang G (2007) Life cycle reliability engineering. John Wiley & Sons, Hoboken

    Book  Google Scholar 

  • Yang XS (ed) (2017) Nature-inspired algorithms and applied optimization, vol 744. Springer, Cham

    Google Scholar 

  • Ye ZS, Chen LP, Tang LC, Xie M (2014) Accelerated degradation test planning using the inverse Gaussian process. IEEE Trans Reliab 63(3):750–763

    Article  Google Scholar 

  • Zhang C, Lu X, Tan Y, Wang Y (2015) Reliability demonstration methodology for products with Gamma Process by optimal accelerated degradation testing. Reliab Eng Syst Saf 142:369–377

    Article  Google Scholar 

Download references

Funding

No funds, grants, or other support was received.

Author information

Authors and Affiliations

Authors

Contributions

E. Mosayebi Omshi and F. Azizi contributed to the design and implementation of the research, to the analysis of the results and to the writing of the manuscript.

Corresponding author

Correspondence to Fariba Azizi.

Ethics declarations

Ethical statement

I agree with the ethical statement outlined in the guide for authors.

Appendix

Appendix

We know that \(t_j=jf\) for \(j=1, \dots , n\). Taking this into account, the log-likelihood function with parameter set \(\varTheta =(\beta _1, \beta _2,\gamma , q)\) can be rewritten as:

$$\begin{aligned}&l(\varTheta |{\underline{y}})\propto \frac{n\ell _1}{2}\ln \lambda _1 + \frac{n\ell _2}{2}\ln \lambda _2+n\sum _{j=1}^{\ell _1} \ln ( t_j^q-t_{j-1}^q)\\&\quad +n\sum _{j=\ell _1+1}^{\ell _1+\ell _2} \ln \left( (t_j-\tau _1)^q- (t_{j-1}-\tau _1)^q\right) \nonumber \\&\quad - \dfrac{\lambda _1}{2\mu _1^2}y_{1.}-\dfrac{\lambda _1}{2}y_{1r}+\dfrac{n\lambda _1}{\mu _1} \tau _1^q - \dfrac{\lambda _2}{2\mu _2^2}y_{2.}\\&\quad -\dfrac{\lambda _2}{2}y_{2r}+\dfrac{n\lambda _2}{\mu _2} (\tau _2-\tau _1)^q, , \end{aligned}$$

where \(y_{1.}\), \(y_{2.}\), \(y_{1r}\), and \(y_{2r}\) are the observed values of the statistics in (6) and \(\mu _k, \lambda _k\) for \(k=1,2\) are defined in (10) and (11), respectively.

It simply can be driven that:

$$\begin{aligned} \begin{array}{ll} E(Y_{1.})=n \mu _1\tau _1^q,&{}\quad E(Y_{1r})=\dfrac{n}{ \mu _1}\tau _1^q+\dfrac{n\ell _1}{\lambda _1}, \\ E(Y_{2.})=n\mu _2(\tau _2-\tau _1)^q,&{}\quad E(Y_{2r})=\dfrac{n}{ \mu _2}(\tau _2-\tau _1)^q+\dfrac{n\ell _2}{\lambda _2}. \end{array} \end{aligned}$$

Then, the expressions of the elements of the Fisher information \(I(\varTheta )\) in (13) are:

$$\begin{aligned}&E\left( -\dfrac{\partial ^2 l}{\partial \beta _1^2}\right) =\dfrac{n\lambda _1}{\mu _1} \tau _1^q +\dfrac{n\lambda _2}{\mu _2}(\tau _2-\tau _1)^q, \\&E\left( - \dfrac{\partial ^2 l}{\partial \beta _2^2}\right) =\dfrac{n}{2}(\ell _1+\ell _2), \\&E\left( -\dfrac{\partial ^2 l}{\partial \gamma ^2}\right) =\dfrac{n}{2}(\ell _1 S_1^2+\ell _2 S_2^2) +\dfrac{nS_1^2\lambda _1}{\mu _1} \tau _1^q +\dfrac{nS_2^2\lambda _2}{\mu _2}(\tau _2-\tau _1)^q, \\&E\left( - \dfrac{\partial ^2 l}{\partial q^2}\right) =2n \sum _{j=1}^{\ell _1}\dfrac{ \left[ t_j^q\ln t_j -t_{j-1}^q\ln t_{j-1} \right] ^2}{\left[ t_j^q-t_{j-1}^q\right] ^2}\\&\qquad +n\dfrac{\lambda _1}{\mu _1} \sum _{j=1}^{\ell _1}\dfrac{ \left[ t_j^q\ln t_j -t_{j-1}^q\ln t_{j-1} \right] ^2}{ t_j^q-t_{j-1}^q}\\&\qquad +2n \sum _{j=\ell _1+1}^{\ell _1+\ell _2}\dfrac{ \left[ (t_j-\tau _1)^q\ln (t_j-\tau _1) -(t_{j-1}-\tau _1)^q\ln (t_{j-1}-\tau _1) \right] ^2}{\left[ (t_j-\tau _1)^q-(t_{j-1}-\tau _1)^q\right] ^2}\\&\qquad +n\dfrac{\lambda _2}{\mu _2} \sum _{j=\ell _1+1}^{\ell _1+\ell _2}\dfrac{ \left[ (t_j-\tau _1)^q\ln (t_j-\tau _1) -(t_{j-1}-\tau _1)^q\ln (t_{j-1}-\tau _1) \right] ^2}{(t_j-\tau _1)^q-(t_{j-1}-\tau _1)^q},\\&E\left( -\dfrac{\partial ^2 l}{\partial \beta _1\partial \beta _2}\right) =E\left( -\dfrac{\partial ^2 l}{\partial \beta _2\partial \beta _1}\right) =0,\\&E\left( -\dfrac{\partial ^2 l}{\partial \beta _1\partial \gamma }\right) =E\left( -\dfrac{\partial ^2 l}{\partial \gamma \partial \beta _1}\right) \\&\quad =\dfrac{nS_1\lambda _1}{\mu _1}\tau _1^q +\dfrac{nS_2\lambda _2}{\mu _2}(\tau _2-\tau _1)^q,\\&E\left( - \dfrac{\partial ^2 l}{\partial \beta _1\partial q}\right) =E\left( -\dfrac{\partial ^2 l}{\partial q\partial \beta _1}\right) \\&\quad =\dfrac{n\lambda _1}{\mu _1} \sum _{j=1}^{\ell _1} \left[ t_j^q \ln t_j -t_{j-1}^q \ln t_{j-1} \right] \\&\qquad +\dfrac{n\lambda _2}{\mu _2} \sum _{j=\ell _1+1}^{\ell _1+\ell _2} \left[ (t_j-\tau _1)^q \ln (t_j-\tau _1)- (t_{j-1}-\tau _1)^q \ln (t_{j-1}-\tau _1)\right] ,\\&E\left( -\dfrac{\partial ^2 l}{\partial \beta _2\partial \gamma }\right) =E\left( -\dfrac{\partial ^2 l}{\partial \gamma \partial \beta _2}\right) =\dfrac{n}{2}(\ell _1 S_1+\ell _2 S_2), \\&E\left( -\dfrac{\partial ^2 l}{\partial \beta _2\partial q}\right) =E\left( -\dfrac{\partial ^2 l}{\partial q\partial \beta _2}\right) = n \sum _{j=1}^{\ell _1}\dfrac{ t_j^q\ln t_j -t_{j-1}^q\ln t_{j-1} }{ t_j^q-t_{j-1}^q}\\&\qquad +n \sum _{j=\ell _1+1}^{\ell _1+\ell _2}\dfrac{ (t_j-\tau _1)^q\ln (t_j-\tau _1) -(t_{j-1}-\tau _1)^q\ln (t_{j-1}-\tau _1) }{ (t_j-\tau _1)^q-(t_{j-1}-\tau _1)^q}, \\&E\left( -\dfrac{\partial ^2 l}{\partial \gamma \partial q}\right) =E\left( -\dfrac{\partial ^2 l}{\partial q\partial \gamma }\right) \\&\quad = n S_1\sum _{j=1}^{\ell _1}\dfrac{ t_j^q\ln t_j -t_{j-1}^q\ln t_{j-1} }{ t_j^q-t_{j-1}^q}\\&\qquad +\dfrac{nS_1\lambda _1}{\mu _1}\sum _{j=1}^{\ell _1} \left[ t_j^q \ln t_j -t_{j-1}^q \ln t_{j-1} \right] \\&\qquad +n S_2 \sum _{j=\ell _1+1}^{\ell _1+\ell _2}\dfrac{ (t_j-\tau _1)^q\ln (t_j-\tau _1) -(t_{j-1}-\tau _1)^q\ln (t_{j-1}-\tau _1) }{ (t_j-\tau _1)^q-(t_{j-1}-\tau _1)^q} \\&\qquad +\dfrac{nS_2\lambda _2}{\mu _2} \sum _{j=\ell _1+1}^{\ell _1+\ell _2} \left[ (t_j-\tau _1)^q \ln (t_j-\tau _1)\right. \\&\qquad -\left. (t_{j-1}-\tau _1)^q \ln (t_{j-1}-\tau _1)\right] .\\ \end{aligned}$$

By considering \(\varLambda (t)=t^q\), the p-quantile of the lifetime distribution can be rewritten as:

$$\begin{aligned} {\xi }_p=\left[ \dfrac{\mu _0}{4\lambda _0}\left( z_p+\sqrt{z_p^2+4\omega \lambda _0/\mu _0^2} \right) ^2\right] ^\frac{1}{q}, \end{aligned}$$

where \(\mu _0\) and \(\lambda _0\) are defined in (10) and (11). Hence, the elements of the vector \(C(\varTheta )'\) can be expressed as:

$$\begin{aligned}&\dfrac{\partial \xi _p}{\partial \beta _1}=\dfrac{1}{q}\left( \dfrac{\mu _0}{4\lambda _0}\right) ^\frac{1}{q} \left( z_p+\sqrt{z_p^2+\dfrac{4\omega \lambda _0}{\mu _0^2}}\right) ^{\frac{2}{q}-1}\\&\quad \left[ z_p+\sqrt{z_p^2+\dfrac{4\omega \lambda _0}{\mu _0^2}}-\dfrac{8\omega \lambda _0}{\mu _0^2\sqrt{z_p^2+\dfrac{4\omega \lambda _0}{\mu _0^2}} } \right] ,\\&\dfrac{\partial \xi _p}{\partial \beta _2}=-\dfrac{1}{q}\left( \dfrac{\mu _0}{4\lambda _0}\right) ^\frac{1}{q} \left( z_p+\sqrt{z_p^2+\dfrac{4\omega \lambda _0}{\mu _0^2}}\right) ^{\frac{2}{q}-1} \\&\quad \left[ z_p+\sqrt{z_p^2+\dfrac{4\omega \lambda _0}{\mu _0^2}}-\dfrac{4\omega \lambda _0}{\mu _0^2\sqrt{z_p^2+\dfrac{4\omega \lambda _0}{\mu _0^2}} } \right] ,\\&\dfrac{\partial \xi _p}{\partial \gamma }=S_0 \dfrac{\partial \xi _p}{\partial \beta _1}+S_0 \dfrac{\partial \xi _p}{\partial \beta _2},\\&\dfrac{\partial \xi _p}{\partial q}=-\dfrac{1}{q^2}\left( \dfrac{\mu _0}{4\lambda _0}\right) ^\frac{1}{q} \left( z_p+\sqrt{z_p^2+\dfrac{4\omega \lambda _0}{\mu _0^2}}\right) ^{\frac{2}{q}} \\&\quad \ln \left[ \dfrac{\mu _0}{4\lambda _0}\left( z_p+\sqrt{z_p^2+\dfrac{4\omega \lambda _0}{\mu _0^2}}\right) ^2\right] . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omshi, E.M., Azizi, F. Estimation and Optimization for Step-Stress Accelerated Degradation Tests Under an Inverse Gaussian Process with Tampered Degradation Model. Iran J Sci Technol Trans Sci 46, 297–308 (2022). https://doi.org/10.1007/s40995-021-01243-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40995-021-01243-9

Keywords

Navigation