Skip to main content
Log in

Type II Censored Samples in Experimental Design Under Jones and Faddy’s Skew t Distribution

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions A: Science Aims and scope Submit manuscript

Abstract

In this study, parameters of the one-way analysis of variance (ANOVA) model based on the type II censored samples are estimated when the distribution of the error terms is Jones and Faddy’s skew t. In the estimation procedure, maximum likelihood (ML) methodology is used. Solutions of the likelihood equations are obtained using an iterative method because of the nonlinear terms existing in the likelihood equations. A modified version of the ML methodology is also used. It gives the explicit estimators of the model parameters and has no computational difficulties. A new test statistic is proposed for testing the equality of the treatment effects. An extensive Monte Carlo simulation study is carried out to compare the powers of the test statistics based on the ML and the modified ML estimators of the parameters. Real data are analyzed at the end of the study to illustrate the implementation of the proposed methodologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Acitas S, Kasap P, Senoglu B, Arslan O (2013a) One-step M-estimators: Jones and Faddy’s skew t distribution. J Appl Stati 40(7):1545–1560

    Article  Google Scholar 

  • Acitas S, Kasap P, Senoglu B, Arslan O (2013b) Robust estimation with the skew \(t_{2}\) distribution. Pak J Stat 29(4):409–430

    Google Scholar 

  • Acitas S, Senoglu B, Arslan O (2015) Alpha-skew generalized t distribution. Revista Colombiana de Estadística 38(2):353–370

    Article  MathSciNet  Google Scholar 

  • Álvarez BL, Gamero MDJ (2012) A note on bias reduction of maximum likelihood estimates for the scalar skew t distribution. J Stat Plan Inference 142:608–612

    Article  MathSciNet  Google Scholar 

  • Arellano-Valle RB, Genton MG (2005) On fundamental skew distributions. J Multivar Anal 96:93–116

    Article  MathSciNet  Google Scholar 

  • Arslan O (2009) Maximum lkelihood parameter estimation for the multivariate skew-slash distribution. Stat Probab Lett 79:2158–2165

    Article  Google Scholar 

  • Arslan T (2015) Robust estimation of the model parameters in experimental design for the complete and censored samples. Ph.D. dissertation. Eskisehir Osmangazi University, Eskisehir, Turkey

  • Arslan T, Senoglu B (2016) Statistical inference for the location model when the distribution of the error terms is Jones and Faddys skew t: type II censored samples. In: International conference on trends and perspectives in linear statistical inference (LINSTAT16), 22–25 Aug 2016, Istanbul, Turkey, p 28

  • Arslan T, Senoglu B (2017) Estimation for the location and the scale parameters of the Jones and Faddy’s skew t distribution under the doubly type II censored samples. Anadolu Univ J Sci Technol B Theor Sci 5(1):100–110

    Google Scholar 

  • Barnett VD (1966) Evaluation of the maximum likelihood estimator when the likelihood equation has multiple roots. Biometrika 53:151–165

    Article  MathSciNet  Google Scholar 

  • Bartlett MS (1953) Approximate confidence intervals. Biometrika 40:12–19

    Article  MathSciNet  Google Scholar 

  • Basso RM, Lachos VH, Cabral CRB, Ghosh P (2010) Robust mixture modeling on scale mixtures of skew-normal distributions. Comput Stat Data Anal 54:2926–2941

    Article  MathSciNet  Google Scholar 

  • Behboodian J, Jamalizadeh A, Balakrishnan N (2006) A new class of skew-Cauchy distributions. Stat Probab Lett 76:1488–1493

    Article  MathSciNet  Google Scholar 

  • Box GEP, Cox DR (1964) An analysis of transformations (with disscussion). J R Stat Soc B26:211–252

    MATH  Google Scholar 

  • Demirhan H, Kalaylioglu Z (2015) On the generalized multivariate Gumbel distribution. Stat Probab Lett 103:93–99

    Article  MathSciNet  Google Scholar 

  • Flecher C, Naveau P, Allard D (2009) Estimating the closed skew-normal distribution parameters using weighted moments. Stat Probab Lett 79:1977–1984

    Article  MathSciNet  Google Scholar 

  • García VJ, Gómez-Déniz E, Vázquez-Polo FJ (2010) A new skew generalization of the normal distribution: properties and applications. Comput Stat Data Anal 54:2021–2034

    Article  MathSciNet  Google Scholar 

  • Gayen AK (1950) The distribution of the variance ratio in random samples of any size drawn from nonnormal universes. Biometrika 37:236–255

    Article  MathSciNet  Google Scholar 

  • Geary RC (1932) Testing for normality. Biometrika 23:114–133

    MathSciNet  Google Scholar 

  • Harandi SS, Alamatsaz MK (2013) Alpha-skew Laplace distribution. Stat Probab Lett 83:774–782

    Article  MathSciNet  Google Scholar 

  • Huang WJ, Chen YH (2007) Generalized skew-Cauchy distribution. Stat Probab Lett 77:1137–1147

    Article  MathSciNet  Google Scholar 

  • Huber PJ (1981) Robust statistics. Wiley, New York

    Book  Google Scholar 

  • Islam MQ, Tiku ML (2004) Multiple linear regression model under nonnormality. Commun Stat Theory Methods 33(10):2443–2467

    Article  MathSciNet  Google Scholar 

  • Jones MC (2008) The t family and their close and distant relations. J Korean Stat Soc 37:293–302

    Article  MathSciNet  Google Scholar 

  • Jones MC, Faddy MJ (2003) A skew extension of the t-distribution, with applications. J R Stat Soc Ser B 65:159–174

    Article  MathSciNet  Google Scholar 

  • Kendall MG, Stuart A (1961) The advanced theory of statistics, vol 2. Charles Griffin and Co., London

    MATH  Google Scholar 

  • Kheradmandi A, Rasekh A (2015) Estimation in skew-normal linear mixed measurement error models. J Multivar Anal 136:1–11

    Article  MathSciNet  Google Scholar 

  • Lin TI (2009) Maximum likelihood estimation for multivariate skew normal mixture models. J Multivar Anal 100:257–265

    Article  MathSciNet  Google Scholar 

  • Mameli V (2015) The Kumaraswamy skew-normal distribution. Stat Probab Lett 104:75–81

    Article  MathSciNet  Google Scholar 

  • Mudholkar GS, Hutson AD (2009) The epsilon-skew-normal distribution for analyzing near-normal data. J Stat Plan Inference 83:291–309

    Article  MathSciNet  Google Scholar 

  • Nadarajah S, Ali MM (2004) A skew truncated T distribution. Math Comput Model 40:935–939

    Article  Google Scholar 

  • Pearson ES (1932) The analysis of variance in case of nonnormal variation. Biometrika 23:114–133

    Article  Google Scholar 

  • Puthenpura S, Sinha NK (1986) Modified maximum likkelihood method for the robust estimation of system parameters from very noise data. Automatica 22:231–235

    Article  Google Scholar 

  • Senoglu B (2005) Robust \(2^{k}\) factorial design with Weibull error distributions. J Appl Stat 32(10):1051–1066

    Article  MathSciNet  Google Scholar 

  • Senoglu B (2007) Estimating parameters in one-way analysis of covarinace model with short-tailed symmetric error distributions. J Comput Appl Math 201:275–283

    Article  MathSciNet  Google Scholar 

  • Senoglu B, Tiku ML (2001) Analysis of variance in exprimental design with nonnormal error distributions. Commun Stat Theory Methods 30(7):1335–1352

    Article  Google Scholar 

  • Senoglu B, Tiku ML (2004) Censored and truncated samples in experimental design under non-normality. Stat Methods 6(2):173–199

    MathSciNet  MATH  Google Scholar 

  • Senoglu B, Acitas S, Kasap P (2012) Robust \(2^{k}\) factorial designs: non-normal symmetric distribution. Pak J Stat 28(1):93–114

    MathSciNet  Google Scholar 

  • Srivastava ABL (1959) Effect of nonnormality on the power of the analysis of variance test. Biometrika 46:114–122

    Article  MathSciNet  Google Scholar 

  • Tiku ML (1964) Approximating the general nonnormal variance ratio sampling distributions. Biometrika 51:83–95

    Article  MathSciNet  Google Scholar 

  • Tiku ML (1967) Estimating the mean and standart deviation from censored normal sample. Biometrika 54:155–165

    Article  MathSciNet  Google Scholar 

  • Tiku ML (1968) Estimating the parameters of normal and logistic distributions from censored normal sample. Aust J Stat 10:64–67

    Article  MathSciNet  Google Scholar 

  • Tiku ML (1971) Power function of the F test under nonnormal situations. J Am Stat Assoc 66:913–916

    MATH  Google Scholar 

  • Tiku ML (1973) Testing group effects from type II censored normal samples in experimental design. Biometrics 29:24–33

    Article  Google Scholar 

  • Tiku ML (1982) Testing linear contrast of means in experimental design without assuming normality and homogeneity of variances. Biometr J 24(6):613–627

    Article  MathSciNet  Google Scholar 

  • Tiku ML, Stewart DE (1977) Estimating and testing group effects from type I censored normal samples in experimental design. Commun Stat Theory Methods A 6(15):1485–1501

    Article  MathSciNet  Google Scholar 

  • Vaughan DC (1992) On the Tiku–Suresh method of estimation. Commun Stat Theory Methods 21(2):451–469

    Article  MathSciNet  Google Scholar 

  • Vaughan DC, Tiku ML (2000) Estimation and hypothesis testing for non-normal bivariate distribution and applications. Math Comput Model 32:53–67

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the reviewers for their valuable comments which have substantially improved this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Talha Arslan.

Appendices

Appendix A

1.1 A1: Elements of the Hessian Matrix H

$$\begin{aligned} \dfrac{\partial ^2 \ln L}{\partial \mu ^2} & =-\dfrac{(a+0.5)}{\sigma ^2}\sum _{i=1}^{c}\sum _{j=r_{1i}+1}^{n-r_{2i}}\dfrac{v[3z_{ij}(v+z_{ij}^2)^{1/2}+(v+3z_{ij}^2)]}{[(v+z_{ij}^2)^{3/2}+z_{ij}(v+z_{ij}^2)]^2} \\& \quad +\dfrac{(b+0.5)}{\sigma ^2}\sum _{i=1}^{c}\sum _{j=r_{1i}+1}^{n-r_{2i}}\dfrac{v[3z_{ij}(v+z_{ij}^2)^{1/2}-(v+3z_{ij}^2)]}{[(v+z_{ij}^2)^{3/2}-z_{ij}(v+z_{ij}^2)]^2} \\& \quad + \sum _{i=1}^{c}\dfrac{r_{1i}}{\sigma ^2}\dfrac{f^{'}(z_{ir_{1i}+1})F(z_{ir_{1i}+1})-f(z_{ir_{1i}+1})^2}{F(z_{ir_{1i}+1})^2} \\& \quad -\sum _{i=1}^{c}\dfrac{r_{2i}}{\sigma ^2}\dfrac{f^{'}(z_{in_{i}-r_{2i}})(1-F(z_{in_{i}-r_{2i}}))-f(z_{in_{i}-r_{2i}})^2}{(1-F(z_{in_{i}-r_{2i}}))^2}, \end{aligned}$$
$$\begin{aligned} \dfrac{\partial ^2 \ln L}{\partial \tau _{i}^2} & =-\dfrac{(a+0.5)}{\sigma ^2}\sum _{j=r_{1i}+1}^{n-r_{2i}}\dfrac{v[3z_{ij}(v+z_{ij}^2)^{1/2}+(v+3z_{ij}^2)]}{[(v+z_{ij}^2)^{3/2}+z_{ij}(v+z_{ij}^2)]^2} \\& \quad +\dfrac{(b+0.5)}{\sigma ^2}\sum _{j=r_{1i}+1}^{n-r_{2i}}\dfrac{v[3z_{ij}(v+z_{ij}^2)^{1/2}-(v+3z_{ij}^2)]}{[(v+z_{ij}^2)^{3/2}-z_{ij}(v+z_{ij}^2)]^2}\\& \quad +\dfrac{r_{1i}}{\sigma ^2}\dfrac{f^{'}(z_{ir_{1i}+1})F(z_{ir_{1i}+1})-f(z_{ir_{1i}+1})^2}{F(z_{ir_{1i}+1})^2} \\& \quad - \dfrac{r_{2i}}{\sigma ^2}\dfrac{f^{'}(z_{in_{i}-r_{2i}})(1-F(z_{in_{i}-r_{2i}}))-f(z_{in_{i}-r_{2i}})^2}{(1-F(z_{in_{i}-r_{2i}}))^2}, \end{aligned}$$
$$\begin{aligned} \dfrac{\partial ^2 \ln L}{\partial \sigma ^2} & =\sum _{i=1}^{c}\dfrac{n_{i}-r_{1i}-r_{2i}}{\sigma ^2}+\dfrac{a+0.5}{\sigma ^2}\sum _{i=1}^{c}\sum _{i=r_{1i}+1}^{n_{i}-r_{2i}}z_{ij}\dfrac{v}{(v+z_{ij}^2)^{3/2}+z_{ij}(v+z_{ij}^2)} \\& \quad -\dfrac{(a+0.5)}{\sigma ^2}\sum _{i=1}^{c}\sum _{j=r_{1i}+1}^{n-r_{2i}}z_{ij}^2\dfrac{v[3z_{ij}(v+z_{ij}^2)^{1/2}+(v+3z_{ij}^2)]}{[(v+z_{ij}^2)^{3/2}+z_{ij}(v+z_{ij}^2)]^2} \\& \quad -\dfrac{b+0.5}{\sigma ^2}\sum _{i=1}^{c}\sum _{i=r_{1i}+1}^{n_{i}-r_{2i}}z_{ij}\dfrac{v}{(v+z_{ij}^2)^{3/2}-z_{ij}(v+z_{ij}^2)} \\& \quad +\dfrac{(b+0.5)}{\sigma ^2}\sum _{i=1}^{c}\sum _{j=r_{1i}+1}^{n-r_{2i}}z_{ij}^2\dfrac{v[3z_{ij}(v+z_{ij}^2)^{1/2}-(v+3z_{ij}^2)]}{[(v+z_{ij}^2)^{3/2}-z_{ij}(v+z_{ij}^2)]^2} \\& \quad + \sum _{i=1}^{c}\dfrac{r_{1i}}{\sigma ^2}z_{ir_{1i}+1}\left[ \dfrac{{f(z_{ir_{1i}+1}})}{F(z_{ir_{1i}+1})}+\dfrac{f^{'}(z_{ir_{1i}+1})F(z_{ir_{1i}+1})-f(z_{ir_{1i}+1})^2}{F(z_{ir_{1i}+1})^2}\right] \\& \quad - \sum _{i=1}^{c}\dfrac{r_{2i}}{\sigma ^2}z_{in_{i}-r_{2i}}\left[ \dfrac{f(z_{in_{i}-r_{2i})}}{1-F(z_{in_{i}-r_{2i}})}+\dfrac{f^{'}(z_{in_{i}-r_{2i}})(1-F(z_{in_{i}-r_{2i}}))-f(z_{in_{i}-r_{2i}})^2}{(1-F(z_{in_{i}-r_{2i}}))^2}\right] , \end{aligned}$$
$$\begin{aligned} \dfrac{\partial ^2 \ln L}{\partial \mu \partial \tau _{i}} & =-\dfrac{(a+0.5)}{\sigma ^2}\sum _{j=r_{1i}+1}^{n-r_{2i}}z_{ij}\dfrac{v[3z_{ij}(v+z_{ij}^2)^{1/2}+(v+3z_{ij}^2)]}{[(v+z_{ij}^2)^{3/2}+z_{ij}(v+z_{ij}^2)]^2} \\& \quad +\dfrac{(b+0.5)}{\sigma ^2}\sum _{j=r_{1i}+1}^{n-r_{2i}}z_{ij}\dfrac{v[3z_{ij}(v+z_{ij}^2)^{1/2}-(v+3z_{ij}^2)]}{[(v+z_{ij}^2)^{3/2}-z_{ij}(v+z_{ij}^2)]^2} \\& \quad + \dfrac{r_{1i}}{\sigma ^2}\left[ \dfrac{{f(z_{ir_{1i}+1}})}{F(z_{ir_{1i}+1})}+\dfrac{f^{'}(z_{ir_{1i}+1})F(z_{ir_{1i}+1})-f(z_{ir_{1i}+1})^2}{F(z_{ir_{1i}+1})^2}\right] \\& \quad - \dfrac{r_{2i}}{\sigma ^2}\left[ \dfrac{f(z_{in_{i}-r_{2i})}}{1-F(z_{in_{i}-r_{2i}})}+\dfrac{f^{'}(z_{in_{i}-r_{2i}})(1-F(z_{in_{i}-r_{2i}}))-f(z_{in_{i}-r_{2i}})^2}{(1-F(z_{in_{i}-r_{2i}}))^2}\right] , \end{aligned}$$
$$\begin{aligned} \dfrac{\partial ^2 \ln L}{\partial \mu \partial \sigma } & =-\dfrac{(a+0.5)}{\sigma ^2}\sum _{i=1}^{c}\sum _{j=r_{1i}+1}^{n-r_{2i}}z_{ij}\dfrac{v[3z_{ij}(v+z_{ij}^2)^{1/2}+(v+3z_{ij}^2)]}{[(v+z_{ij}^2)^{3/2}+z_{ij}(v+z_{ij}^2)]^2} \\& \quad +\dfrac{(b+0.5)}{\sigma ^2}\sum _{i=1}^{c}\sum _{j=r_{1i}+1}^{n-r_{2i}}z_{ij}\dfrac{v[3z_{ij}(v+z_{ij}^2)^{1/2}-(v+3z_{ij}^2)]}{[(v+z_{ij}^2)^{3/2}-z_{ij}(v+z_{ij}^2)]^2} \\& \quad + \sum _{i=1}^{c}\dfrac{r_{1i}}{\sigma ^2}\left[ \dfrac{{f(z_{ir_{1i}+1}})}{F(z_{ir_{1i}+1})}+\dfrac{f^{'}(z_{ir_{1i}+1})F(z_{ir_{1i}+1})-f(z_{ir_{1i}+1})^2}{F(z_{ir_{1i}+1})^2}\right] \\& \quad - \sum _{i=1}^{c}\dfrac{r_{2i}}{\sigma ^2}\left[ \dfrac{f(z_{in_{i}-r_{2i})}}{1-F(z_{in_{i}-r_{2i}})}+\dfrac{f^{'}(z_{in_{i}-r_{2i}})(1-F(z_{in_{i}-r_{2i}}))-f(z_{in_{i}-r_{2i}})^2}{(1-F(z_{in_{i}-r_{2i}}))^2}\right] \end{aligned}$$

and

$$\begin{aligned} \dfrac{\partial ^2 \ln L}{\partial \tau _{i}\partial \sigma } & =-\dfrac{(a+0.5)}{\sigma ^2}\sum _{j=r_{1i}+1}^{n-r_{2i}}z_{ij}\dfrac{v[3z_{ij}(v+z_{ij}^2)^{1/2}+(v+3z_{ij}^2)]}{[(v+z_{ij}^2)^{3/2}+z_{ij}(v+z_{ij}^2)]^2} \\& \quad + \dfrac{(b+0.5)}{\sigma ^2}\sum _{j=r_{1i}+1}^{n-r_{2i}}z_{ij}\dfrac{v[3z_{ij}(v+z_{ij}^2)^{1/2}-(v+3z_{ij}^2)]}{[(v+z_{ij}^2)^{3/2}-z_{ij}(v+z_{ij}^2)]^2} \\& \quad + \dfrac{r_{1i}}{\sigma ^2}\left[ \dfrac{{f(z_{ir_{1i}+1}})}{F(z_{ir_{1i}+1})}+\dfrac{f^{'}(z_{ir_{1i}+1})F(z_{ir_{1i}+1})-f(z_{ir_{1i}+1})^2}{F(z_{ir_{1i}+1})^2}\right] \\& \quad - \dfrac{r_{2i}}{\sigma ^2}\left[ \dfrac{f(z_{in_{i}-r_{2i})}}{1-F(z_{in_{i}-r_{2i}})}+\dfrac{f^{'}(z_{in_{i}-r_{2i}})(1-F(z_{in_{i}-r_{2i}}))-f(z_{in_{i}-r_{2i}})^2}{(1-F(z_{in_{i}-r_{2i}}))^2}\right] . \end{aligned}$$

1.2 A2: Elements of the Hessian Matrix \(H^{\star }\) for the Reparametrized Model

$$\begin{aligned} \dfrac{\partial ^2 \ln L}{\partial \mu _{i}^2} & =-\dfrac{(a+0.5)}{\sigma ^2}\sum _{j=r_{1i}+1}^{n-r_{2i}}\dfrac{v[3z_{ij}(v+z_{ij}^2)^{1/2}+(v+3z_{ij}^2)]}{[(v+z_{ij}^2)^{3/2}+z_{ij}(v+z_{ij}^2)]^2} \\& \quad + \dfrac{(b+0.5)}{\sigma ^2}\sum _{j=r_{1i}+1}^{n-r_{2i}}\dfrac{v[3z_{ij}(v+z_{ij}^2)^{1/2}-(v+3z_{ij}^2)]}{[(v+z_{ij}^2)^{3/2}-z_{ij}(v+z_{ij}^2)]^2} \\& \quad + \dfrac{r_{1i}}{\sigma ^2}\dfrac{f^{'}(z_{ir_{1i}+1})F(z_{ir_{1i}+1})-f(z_{ir_{1i}+1})^2}{F(z_{ir_{1i}+1})^2} \\& \quad - \dfrac{r_{2i}}{\sigma ^2}\dfrac{f^{'}(z_{in_{i}-r_{2i}})(1-F(z_{in_{i}-r_{2i}}))-f(z_{in_{i}-r_{2i}})^2}{(1-F(z_{in_{i}-r_{2i}}))^2}, \end{aligned}$$
$$\begin{aligned} \dfrac{\partial ^2 \ln L}{\partial \mu _{i}\partial \mu _{l}}=0 \quad {\text{for all}} \quad i \ne l \ (i=1, 2, \ldots ,c ; \ l=1, 2, \ldots ,c), \end{aligned}$$

and

$$\begin{aligned} \dfrac{\partial ^2 \ln L}{\partial \mu _{i}\partial \sigma } & =-\dfrac{(a+0.5)}{\sigma ^2}\sum _{j=r_{1i}+1}^{n-r_{2i}}z_{ij}\dfrac{v[3z_{ij}(v+z_{ij}^2)^{1/2}+(v+3z_{ij}^2)]}{[(v+z_{ij}^2)^{3/2}+z_{ij}(v+z_{ij}^2)]^2} \\& \quad + \dfrac{(b+0.5)}{\sigma ^2}\sum _{j=r_{1i}+1}^{n-r_{2i}}z_{ij}\dfrac{v[3z_{ij}(v+z_{ij}^2)^{1/2}-(v+3z_{ij}^2)]}{[(v+z_{ij}^2)^{3/2}-z_{ij}(v+z_{ij}^2)]^2} \\& \quad + \dfrac{r_{1i}}{\sigma ^2}\left[ \dfrac{{f(z_{ir_{1i}+1}})}{F(z_{ir_{1i}+1})}+\dfrac{f^{'}(z_{ir_{1i}+1})F(z_{ir_{1i}+1})-f(z_{ir_{1i}+1})^2}{F(z_{ir_{1i}+1})^2}\right] \\& \quad -\dfrac{r_{2i}}{\sigma ^2}\left[ \dfrac{f(z_{in_{i}-r_{2i})}}{1-F(z_{in_{i}-r_{2i}})}+\dfrac{f^{'}(z_{in_{i}-r_{2i}})(1-F(z_{in_{i}-r_{2i}}))-f(z_{in_{i}-r_{2i}})^2}{(1-F(z_{in_{i}-r_{2i}}))^2}\right] \end{aligned}$$

Appendix B

MML estimators have the following properties:

Lemma 1

For n tends to infinity, \(\hat{\mu }\) is normally distributed with mean \(\mu\) and variance \(\sigma ^2/m\).

Proof

This follows from the fact that the likelihood equation given in (7) and the modified likelihood equation given in (17) are asymptotically equivalent and \(\partial \ln L^{*}/\partial \mu\) assumes the form, see Kendall and Stuart (1961):

$$\begin{aligned} \dfrac{\partial \ln L}{\partial \mu }\cong \dfrac{\partial \ln L^*}{\partial \mu } & =\dfrac{m}{\sigma^2}(K+D\hat{\sigma}-\mu )\\ & =\dfrac{m}{\sigma^2} (\hat{\mu}-\mu ). \end{aligned}$$

The normality of \(\hat{\mu}\) follows from the fact that \(E \left( \frac{\partial ^{r} \ln L^*}{\partial \mu ^{r}}\right) =0\) for all \(r \ge 3\), see Bartlett (1953).

Lemma 2

For n tends to infinity, \(\hat{\tau}_{i}\) is normally distributed with mean \(\tau _{i}\) and variance \(\sigma^2/m_{i}\).

Proof

This follows from the fact that the likelihood equation given in (8) and the modified likelihood equation given in (18) are asymptotically equivalent and \(\partial \ln L^{*}/\partial \tau _{i}\) assumes the form, see Kendall and Stuart (1961):

$$\begin{aligned} \dfrac{\partial \ln L}{\partial \tau_{i}}\cong \dfrac{\partial \ln L^*}{\partial \tau _{i}} & =\dfrac{m_{i}}{\sigma^2}\{[(K_{i}-K)+(D_{i}-D)\hat{\sigma}]-\tau _{i}\} \\ & =\dfrac{m_{i}}{\sigma ^2} (\hat{\tau}_{i}-\tau _{i} ). \end{aligned}$$

The normality of \(\hat{\tau }_{i}\) follows from the fact that \(E \left( \frac{\partial ^{r} \ln L^*}{\partial \tau _{i}^{r}}\right) =0\) for all \(r \ge 3\), see Bartlett (1953).

Lemma 3

Conditional on \(\mu +\tau _{i}\) being known, the distribution of \(A\hat{\sigma}^{2}/\sigma ^2\) is asymptotically Chi square with A degrees of freedom.

Proof

This follows from the fact that \(B_0/\sqrt{AC_0}\cong 0\) and \(\partial \ln L^{*}/\partial \sigma\) assumes the form, see Kendall and Stuart (1961):

$$\begin{aligned} \dfrac{\partial \ln L}{\partial \sigma }\cong \dfrac{\partial \ln L^*}{\partial \sigma }=\dfrac{A}{\sigma ^3}\left( \dfrac{C_0}{A}-\sigma ^2\right) , \end{aligned}$$

where \(B_0\) and \(C_0\) are the same as B and C, respectively, with \(K_i\) is replaced by \(\mu +\tau _{i}\), see Tiku (1982) and Senoglu (2007).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arslan, M.S.T., Senoglu, B. Type II Censored Samples in Experimental Design Under Jones and Faddy’s Skew t Distribution. Iran J Sci Technol Trans Sci 42, 2145–2157 (2018). https://doi.org/10.1007/s40995-017-0398-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40995-017-0398-3

Keywords

Navigation