Skip to main content
Log in

B-spline Curve Fitting by Diagonal Approximation BFGS Methods

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions A: Science Aims and scope Submit manuscript

Abstract

Fitting of data points by a B-spline curve is demanded in many applications in computer graphics, computer vision, CAD/CAM, and image processing. In this paper, we use approximation BFGS Methods to solve the associated nonlinear least square optimization problem and present an approach for inserting further control points of the B-spline curve. Differently from the traditional methods, the proposed technique optimizes the l control points and the N foot points simultaneously, as in Zheng et al. (Comput Aided Geometr Des 29(7):448–462, 2012), Speer et al. (Comput Aided Geometr Des 15(9):869–877, 1998). The complexity per step of our technique is O(n), where \(n=l+N\), and it requires only O(n) memory allocations. Our experimental results show the usefulness of the method for complicated shapes with a large number of data points, confirming the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Al-Baali M (1999) Improved Hessian approximations for the limited memory BFGS method. Numer Algorithm 22(1):99–112

    Article  MathSciNet  MATH  Google Scholar 

  • Battiti R (1992) First-and second-order methods for learning: between steepest descent and Newton’s method. Neural Comput 4(2):141–166

    Article  Google Scholar 

  • Bergström P, Söderkvist I (2012) Fitting NURBS using separable least squares techniques. Int J Math Modell Numer Optim 3(4):319–334

    MATH  Google Scholar 

  • Blake A, Isard M (2012) Active contours: the application of techniques from graphics, vision, control theory and statistics to visual tracking of shapes in motion. Springer, New York

    Google Scholar 

  • Broyden CG (1970) The convergence of a class of double-rank minimization algorithms 1. General considerations. IMA J Appl Math 6(1):76–90

    Article  MATH  Google Scholar 

  • Cai J-F, Chan RH, Di Fiore C (2007) Minimization of a detail-preserving regularization functional for impulse noise removal. J Math Image Vis 29(1):79–91

    Article  MathSciNet  Google Scholar 

  • Cipolla S, Di Fiore C, Tudisco F, Zellini P (2015) Adaptive matrix algebras in unconstrained minimization. Linear Algebra Appl 471:544–568

    Article  MathSciNet  MATH  Google Scholar 

  • Deng C, Lin H (2014) Progressive and iterative approximation for least squares B-spline curve and surface fitting. Comput Aided Des 47:32–44

    Article  MathSciNet  Google Scholar 

  • Di Fiore C, Fanelli S, Lepore F, Zellini P (2003) Matrix algebras in quasi-Newton methods for unconstrained minimization. Numer Math 94(3):479–500

    Article  MathSciNet  MATH  Google Scholar 

  • Dierckx P (1995) Curve and surface fitting with splines. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Farin GE (2002) Curves and surfaces for CAGD: a practical guide. Morgan Kaufmann, Burlington

    Google Scholar 

  • Fletcher R (1970) A new approach to variable metric algorithms. Comput J 13(3):317–322

    Article  MATH  Google Scholar 

  • Gálvez A, Iglesias A (2013) Firefly algorithm for explicit B-spline curve fitting to data points. Math Probl Eng

  • Goldfarb D (1970) A family of variable-metric methods derived by variational means. Math Comput 24(109):23–26

    Article  MathSciNet  MATH  Google Scholar 

  • Goshtasby AA (2000) Grouping and parameterizing irregularly spaced points for curve fitting. ACM Trans Graph (TOG) 19(3):185–203

    Article  MathSciNet  Google Scholar 

  • Hasegawa AY, Tormena C, Parpinelli RS (2014) Bezier curve parametrization using a multiobjective evolutionary algorithm. Int J Comput Sci Appl 11(2):1–18

    Google Scholar 

  • Hoschek J (1988) Intrinsic parametrization for approximation. Comput Aid Geometr Des 5(1):27–31

    Article  MathSciNet  MATH  Google Scholar 

  • Hoschek J, Jüttler B (1999) Techniques for fair and shape preserving surface fitting with tensor-product B-splines. Shape preserving representations in computer aided design. Nova Science Publishers, New York, pp 163–85

    Google Scholar 

  • Hoschek J, Lasser D, Schumaker LL (1993) Fundamentals of computer aided geometric design. AK Peters, Ltd, Natick

    MATH  Google Scholar 

  • Irshad M, Khalid S, Hussain MZ, Sarfraz M (2016) Outline capturing using rational functions with the help of genetic algorithm. Appl Math Comput 274:661–678

    MathSciNet  MATH  Google Scholar 

  • Javidrad F (2012) An accelerated simulated annealing method for B-spline curve fitting to strip-shaped scattered points. Int J CAD/CAM 12(1)

  • Khan MA (2012) A new method for video data compression by quadratic Bézier curve fitting. SIViP 6(1):19–24

    Article  Google Scholar 

  • Kumar GS, Kalra P, Dhande SG (2003) Parameter optimization for B-spline curve fitting using genetic algorithms. In: Evolutionary computation, CEC’03, The 2003 Congress on, volume 3, IEEE, pp 1871–1878

  • Leu M, Peng X, Zhang W (2005) Surface reconstruction for interactive modeling of freeform solids by virtual sculpting. CIRP Ann Manuf Technol 54(1):131–134

    Article  Google Scholar 

  • Liu Y, Wang W (2008) A revisit to least squares orthogonal distance fitting of parametric curves and surfaces. In: International conference on geometric modeling and processing, Springer, New York, pp 384–397

  • Lu F, Milios EE (1994) Optimal spline fitting to planar shape. Sig Process 37(1):129–140

    Article  MATH  Google Scholar 

  • Lu L-Z, Ng MK, Lin F-R (2009) Approximation BFGS methods for nonlinear image restoration. J Comput Appl Math 226(1):84–91

    Article  MathSciNet  MATH  Google Scholar 

  • Nocedal J, Wright S (2006) Numerical optimization. Springer, New York

    MATH  Google Scholar 

  • Park H (2001) Choosing nodes and knots in closed B-spline curve interpolation to point data. Comput Aided Des 33(13):967–974

    Article  Google Scholar 

  • Piegl L, Tiller W (2012) The NURBS book. Springer, New York

    MATH  Google Scholar 

  • Piegl LA, Tiller W (2000) Surface approximation to scanned data. Vis Comput 16(7):386–395

    Article  MATH  Google Scholar 

  • Plass M, Stone M (1983) Curve-fitting with piecewise parametric cubics. In: ACM SIGGRAPH computer graphics, volume 17, ACM, pp 229–239

  • Pottmann H, Leopoldseder S, Hofer M (2002) Approximation with active B-spline curves and surfaces. In: Computer graphics and applications, proceedings of 10th pacific conference on, IEEE, pp 8–25

  • Prasad M, Fitzgibbon A (2006) Single view reconstruction of curved surfaces. In: 2006 IEEE computer society conference on computer vision and pattern recognition (CVPR’06), vol 2, IEEE, pp 1345–1354

  • Sarfraz M, Riyazuddin M, Baig M (2006) Capturing planar shapes by approximating their outlines. J Comput Appl Math 189(1):494–512

    Article  MathSciNet  MATH  Google Scholar 

  • Saux E, Daniel M (2003) An improved hoschek intrinsic parametrization. Comput Aided Geometr Des 20(8):513–521

    Article  MathSciNet  MATH  Google Scholar 

  • Sevaux M, Mineur Y (2007) A curve-fitting genetic algorithm for a styling application. Eur J Oper Res 179(3):895–905

    Article  MATH  Google Scholar 

  • Shanno DF (1970) Conditioning of quasi-Newton methods for function minimization. Math Comput 24(111):647–656

    Article  MathSciNet  MATH  Google Scholar 

  • Shanno DF (1978) Conjugate gradient methods with inexact searches. Math Oper Res 3(3):244–256

    Article  MathSciNet  MATH  Google Scholar 

  • Speer T, Kuppe M, Hoschek J (1998) Global reparametrization for curve approximation. Comput Aided Geometr Des 15(9):869–877

    Article  MathSciNet  MATH  Google Scholar 

  • Sun W, Yuan Y-X (2006) Optimization theory and methods: nonlinear programming, vol 1. Springer, New York

    MATH  Google Scholar 

  • Vassilev TI (1996) Fair interpolation and approximation of B-splines by energy minimization and points insertion. Comput Aided Des 28(9):753–760

    Article  Google Scholar 

  • Wang W, Pottmann H, Liu Y (2006) Fitting B-spline curves to point clouds by curvature-based squared distance minimization. ACM Trans Graph (ToG) 25(2):214–238

    Article  Google Scholar 

  • Wang X, Cheng FF, Barsky BA (1997) Energy and B-spline interproximation. Comput Aided Des 29(7):485–496

    Article  Google Scholar 

  • Xie H, Qin H (2001) Automatic knot determination of NURBS for interactive geometric design. In: Shape modeling and applications, SMI 2001 international conference on, IEEE, pp 267–276

  • Yang H, Wang W, Sun J (2004) Control point adjustment for B-spline curve approximation. Comput Aided Des 36(7):639–652

    Article  Google Scholar 

  • Zheng W, Bo P, Liu Y, Wang W (2012) Fast B-spline curve fitting by L-BFGS. Comput Aided Geometr Des 29(7):448–462

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thanks anonymous referees for their helpful comments and useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. B. Loghmani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimi, A., Loghmani, G.B. B-spline Curve Fitting by Diagonal Approximation BFGS Methods. Iran J Sci Technol Trans Sci 43, 947–958 (2019). https://doi.org/10.1007/s40995-017-0347-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40995-017-0347-1

Keywords

Mathematics Subject Classification

Navigation