Skip to main content
Log in

Studies of Pollen Characteristics in Plants of Fruitless Tecomella undulata (Sm.) Seem. (Bignoniaceae) in Golparaki Region of Jiroft City, Iran

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions A: Science Aims and scope Submit manuscript

Abstract

Tecomella undulata is valued for beautiful flowers, resistance against extreme temperature and drought, stabilizing shifting sand dunes, medicinal properties and wood production. In spite of massive flowering, the species is seedless. The present study examines the causes of its sterility indicating on pollen characteristics. Flowers were hand pollinated by pollen of either self- or outcross pollen. Some flowers were tagged as open pollination treatment. Pollen structure, in situ and in vitro pollen germination and pollen tube growth were analyzed. Mature pollen grains are heteromorphic, mostly heterogeneous sized as small and large. Both pollen grains types are prolate and tricolpate with rugulate–reticulate sculpture. Flowers are protandrous and have long stylus; a nectariferous tissue secreting abundant nectar exists in the ovary base. No effective pollinator visited flowers during the observation period. No pollen germination and pollen tube growth were observed in self- and cross-pollinated styles and under in vitro condition. It seems that pollen heterogeneity, lack of pollinators and pollen limitation, the failure of autogamy due to protandry or long styli as well as self-incompatibility resulted in pollen sterility and seedlessness. In addition, probably polyploidy and cytomixis affect infertility too that needs to be studied in detail in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aghdaei M, Salehi H, Sarmast MK (2012) Effects of silver nanoparticles on Tecomella undulata (Roxb) Seem. Micropropagation. Adv Horticult Sci 26(1):21–24

    Google Scholar 

  • Ahmad F, Khan RA, Rasheed S (1994) Preliminary screening of methanolic extracts of Celastrus paniculatus and Tecomella undulate (Sm.) for analgesic and anti-inflammatory activities. J Ethnopharmacol 42:193–198

    Article  Google Scholar 

  • Ai HL, Zhou W, Xu K, Wang H, Li DZ (2013) The reproductive strategy of a pollinator-limited Himalayan plant, Incarvillea mairei (Bignoniaceae). BMC Plant Biol 13:195. doi:10.1186/1471-2229

    Article  Google Scholar 

  • Aizen MA, Harder LD (2007) Expanding the limits of the pollen-limitation concept: effects of pollen quantity and quality. Ecology 88:271–281

    Article  Google Scholar 

  • Alves MF, Duarte MO, Oliveira PE, Sampaio DS (2013) Self-sterility in the hexaploid Handroanthus serratifolius (Bignoniaceae), the national flower of Brazil. Acta Bot Br 27(4):714–722

    Article  Google Scholar 

  • Arroyo MTK, Munoz MS, Henriquez C, Till-Bottraud I, Perez F (2006) Erratic pollination, high selfing levels and their correlates and consequences in an altitudinally widespread above-tree-line species in the high Andes of Chile. Acta Oecol l30:248–257

  • Barros MG (2001) Pollination ecology of Tabebuia aurea (Manso) Benth. and Hook. and T. ochracea (Cham.) Standl. (Bignoniaceae) in Central Brazil cerrado vegetation. Br J Bot 24(3):255–261

    Google Scholar 

  • Bedi YS (1990) Cytomixis in woody species. Proc Natl Acad Sci India Sect B 100:233–238

    Google Scholar 

  • Bhandari MM (1990) Flora of Indian desert. MPS Repros, Jodhpur

    Google Scholar 

  • Bhau BS, Negi MS, Jindal SK, Singh M, Lakshmikumaran M (2007) Assessing genetic diversity of Tecomella undulata (Sm.): an endangered tree species using amplified fragment length polymorphisms-based molecular markers. Curr Sci 93(1):67–72

    Google Scholar 

  • Bittencourt NS Jr, Semir J (2004) Pollination biology of Zeyheria montana (Bignoniaceae). Plant Syst Evol 247:241–254

    Article  Google Scholar 

  • Bittencourt NS Jr, Pereira EJ, Sao-Thiago PS, Semir J (2011) The reproductive biology of Cybistax antisyphilitica (Bignoniaceae), a characteristic tree of the South American savannah-like “Cerrado” vegetation. Flora 206:872–886

    Article  Google Scholar 

  • Brewbaker JL, Kwack BH (1963) The essential role of calcium ion in pollen germination and pollen tube growth. Am J Bot 50:859–865

    Article  Google Scholar 

  • Burelo-Ramos CM, Lorea-Hernandez FG, Vovides AP (2009) Palynological survey of subtribe Pithecocteniinae (Bignoniaceae, Bignoniaceae). Bot J Linn Soc 159:155–162

    Article  Google Scholar 

  • Buurman J (1977) Contribution to the pollen morphology of the Bignoniaceae with special reference to the tricolpate type. Pollen Spores 19:447–519

    Google Scholar 

  • Chauhan SVS, Yadav V, Yada DK (1987) Studies into the causes of seedlessness in some Bignoniaceae. J Exp Bot 38(186):173–177

    Article  Google Scholar 

  • Datta AK, Mukherjee M, Iqbal M (2005) Persistent cytomixis in Occimum basilicum L. (Lamiaceae) and Withania somnifera (L.) Dun (Solanaceae). Cytologia 70:309–313

    Article  Google Scholar 

  • Endress PK (1994) Diversity and evolutionary biology of tropical flowers. Cambridge University Press, Cambridge, pp 326–328

  • Firetti-Leggiere F, Costa IR, Lohman LG, Semir J, Forni-Martins ER (2011) Chromosome studies in Bignonieae (Bignoniaceae): the first record of polyploidy in Anemopaegma. Cytologia 76:185–191

    Article  Google Scholar 

  • Firetti-Leggieri F, Lohmann LG, Alcantara S, Costa IR, Semir J (2013) Polyploidy and polyembryony in Anemopaegma (Bignonieae, Bignoniaceae). Plant Reproduct 26:43–53

    Article  Google Scholar 

  • Fischer E, Theisen I, Lohmann LG (2004) Bignoniaceae. In: Kadereit JW, Kubitzki K (eds) The families and genera of vascular plants. Springer, Berlin, pp 9–98

    Google Scholar 

  • Galetto L (1995) Nectary structure and nectar characteristics in some Bignoniaceae. Plant Syst Evol 196:99–121

    Article  Google Scholar 

  • Gandolphi G, Bittencourt NS Jr (2010) Sistema reprodutivo do Ipe-Branco–Tabebuia roseo-alba. (Ridley) Sandwith. Acta Bot Br 24:840–851

    Article  Google Scholar 

  • Gentry AH (1974) Studies in Bignoniaceae XI: a synopsis of the genus Distictis. Ann Mo Bot Gard 61:494–501

    Article  Google Scholar 

  • Gentry AH (1988) Changes in plant community diversity and floristic composition environmental and geographical gradients. Ann Mo Bot Gard 75:1–34

    Article  Google Scholar 

  • Gentry, A. H. (1990). Evolutionary patterns in neotropical Bignoniaceae. In: Gottsberger G, Prance GT (eds) Reproductive biology and evolution of tropical woody angiosperms. Memoirs of the New York botanical garden, vol 55, pp 118–129

  • Ghaffari SM (2006) Occurrence of diploid and polyploidy microspores in Sorghum bicolor (Poaceae) is the result of cytomixis. Afr J Biotech 5:1450–1453

    Google Scholar 

  • Gibbs PE, Bianchi MB (1999) Does late-acting self-incompatibility (LSI) show family clustering, two more species of Bignoniaceae with LSI: Dolichandra cynanchoides and Tabebuia nodosa. Ann Bot 84:449–457

    Article  Google Scholar 

  • Guimaraes E, Stasi LC, Maimoni-Rodella RCS (2008) Pollination biology of Jacaranda oxyphylla with an emphasis on staminode function. Ann Bot 102(5):699–711

    Article  Google Scholar 

  • Gunaga RP, Vasav VP, Narkhede SS (2012a) Seed abortion in Oroxylum indicum: A commercial medicinal tree. Res Rev J Agric Allied Sci 1(1):1–3

    Google Scholar 

  • Gunaga RP, Kanfade AM, Vasudeva R (2012b) Patterns of seed emptiness among Seed Production Areas of Teak (Tectona grandis) in Karnataka, India. Mysore J Agric Sci 46:164–167

    Google Scholar 

  • Heslop-Harrison J (1966) Cytoplasmic connexions between angiosperm meiocytes. Ann Bot 30:221–222

    Article  Google Scholar 

  • Joshi KC, Singh P, Pardasani RT (1977) Quinones and other constituents from the roots of Tecomella undulata. Plant Med 31:14–16

    Article  Google Scholar 

  • Kumar A, Ram H, Sharma SK, Rama Rao S (2008) Comparative meiotic chromosome studies in nine accessions of Tecomella undulata (Sm.) Seem., threatened tree of Indian desert. Silvae Genet 57(6):301–306

    Google Scholar 

  • Kumawat R, Sharma S, Kumar S (2012) An overview for various aspects of multifaceted, health care Tecomella undulate Seem. plant. Acta Pol Pharm 69(5):993–996

    Google Scholar 

  • Lattoo SK, Khan S, Bamotra S, Dhar AK (2006) Cytomixis impairs meiosis and influences reproductive success in Chlorophytum comosum (Thunb) Jacq. An additional strategy and possible implications. J Biosci 31:629–637

    Article  Google Scholar 

  • Lewis D (1947) Competition and dominance of incompatibility alleles in diploid pollen. Heredity 1:85–108

    Article  Google Scholar 

  • Liu Y, Hui RK, Deng RN, Wang JJ, Wang M, Li ZY (2012) Abnormal male meiosis explains pollen sterility in the polyploid medicinal plant Pinellia ternata (Araceae). Genet Mol Res 11(1):112–120

    Article  Google Scholar 

  • Lohmann LG (2002) Bignoniaceae. In: Henderson A, Mori S (eds) Flowering plant families of tropical America. New York Botanical Garden Press, New York

    Google Scholar 

  • Lopes AV, Vogel S, Machdo IC (2002) Secretory tricomes, a substitutive floral nectar source in Lundia (Bignoniaceae), a genus lacking a functional disc. Ann Bot 90:169–174

    Article  Google Scholar 

  • Lu Y, Chanroj S, Zulkifli L, Johnson MA, Uozumi N, Cheung A, Sze H (2011) Pollen tubes lacking a pair of K+ transporters fail to target ovules in Arabidopsis. Plant Cell 23(1):81–93

    Article  Google Scholar 

  • Maués MM, Oliveira PE, Kanashiro M (2008) Pollination biology in Jacaranda copaia (Aubl.) D Don. (Bignoniaceae) at the “Floresta Nacional do Tapajós”, Central Amazon, Brazil. Br J Bot 31:517–527

    Article  Google Scholar 

  • Moza MK, Bhatnagar AK (2007) Plant reproductive biology studies crucial for conservation. Curr Sci 92(9):1207

    Google Scholar 

  • Mulcahy GB, Mulcahy DL (1983) A comparison of pollen tube growth in bi- and trinucleate pollen. In: Mulcahy DL, Ottaviano E (eds) Pollen: biology and implications for plant breeding. Elsevier Science, New York

    Google Scholar 

  • Negi RS, Sharma MK, Sharma KC, Kshetrapal S, Kothari SL, Trivedi PC (2011) Genetic diversity and variations in the endangered Tree (Tecomella undulata) in Rajasthan. Indian J Fundament Appl Life Sci 1(1):50–58

    Google Scholar 

  • Nirmala A, Rao PN (1996) Genesis of chromosome numerical mosaicism in higher plants. Nucleus 39:15–175

    Google Scholar 

  • Olmstead RG, Zjhra ML, Lohmann LG, Grose SO, Eckert AJ (2009) A molecular phylogeny and classification of Bignoniaceae. Am J Bot 96(9):1731–1743

    Article  Google Scholar 

  • Oloumi H, Rezanejad F (2009) Response of pollen tube growth and seed set to controlled pollination and their relation to self-incompatibility in different cultivars of Petunia hybrida. Grana 48(2):102–108

    Article  Google Scholar 

  • Otto SP (2007) The evolutionary consequences of polyploidy. Cell 131:452–462

    Article  Google Scholar 

  • Rana A, Chauhan S (2012) Factors affecting reproductive success in Jacaranda mimosifolia D. Don. (Bignoniaceae). Int J Plant Reprod Biol 4(1):79–84

    Google Scholar 

  • Rao AV, Kiran B, Lahiri AN, Bala K (1989) Influence of trees on microorganisms of aridisol and its fertility. Indian Forestry 115:680–683

    Google Scholar 

  • Rezanejad F (2009) Air pollution effects on structure, proteins and flavonoids in pollen grains of Thuja orientalis L. (Cupressaceae). Grana 48:205–212

    Article  Google Scholar 

  • Rodriguez-Perez J (2005) Breeding system, flower visitors and seedling survival of two endangered species of Helianthemum (Cistaceae). Ann Bot 95:1229–1236

    Article  Google Scholar 

  • Sargent RD, Otto SP (2004) A phylogenetic analysis of pollination mode and the evolution of dichogamy in angiosperms. Evol Ecol Res 6:1183–1199

    Google Scholar 

  • Shankaranarayan KA, Nanda PC (1963) Cytotaxonomy of Tecomella undulata Seem. Ann Arid Zone 1:174–175

    Google Scholar 

  • Shivanna KR (1982) Pollen-pistil interaction and control of fertilization. In: Johri BM (ed) Experimental embryology of vascular plants. Springer, New York, pp 131–174

    Chapter  Google Scholar 

  • Singh S, Rana A, Chauhan SVS (2009) Impact of environmental changes on the reproductive biology in Pyrostegia venusta Presl. J Environ Biol 30:271–273

    Google Scholar 

  • Singh VK, Barman C, Tandon R (2014) Nectar robbing positively influences the reproductive success of Tecomella undulate (Bignoniaceae). PLoS One 9(7):102–607

    Google Scholar 

  • Singhal VK, Kumar P (2008) Impact of cytomixis on meiosis, pollen viability and pollen size in wild populations of Himalayan poppy (Meconopsis aculeata Royle). J Biosci 33:371–380

    Article  Google Scholar 

  • Singhal VK, Gill BS, Dhaliwal RS (2007) Status of chromosomal diversity in the hardwood tree species of Punjab state. J Cytol Genet 8:67–83

    Google Scholar 

  • Till-Bottraud I, Joly D, Lachaise D, Snook RR (2005) Pollen and sperm heteromorphism: convergence across kingdoms. J Evol Biol 18:1–18

    Article  Google Scholar 

  • Totland O, Schulte-Herbruggen B (2003) Breeding system, insect flower visitation, and floral traits of two alpine Cerastium species in Norway. Arct Antarct Alp Res 35:242–247

    Article  Google Scholar 

  • Tyagi H, Tomar UK (2013) Factors affecting in vitro shoot proliferation and rooting of mature Tecomella undulata (Sm.) Seem Tree. Res Plant Sci 1(2):38–44

    Google Scholar 

  • Wang Y, Zhang N, Qiang W, Xiong Z, Du G (2006) Effects of reduced ambient, and enhanced UV-B radiation on pollen germination and pollen tube growth of six alpine meadow annual species. Environ Exp Bot 57:296–302

    Article  Google Scholar 

  • Weber A, Vogel S (1986) The pollination syndrome of Deplanchea tetraphylla (Bignoniaceae). Plant Syst Evol 154:237–250

    Article  Google Scholar 

  • Wu W, Zheng YL, Yang RW, Chen L (2003) Variation of the chromosome number and cytomixis of Houttuynia cordata from China. Acta Phytotaxon Sin 41:245–257

    Google Scholar 

  • Zjhra M (2006) New taxa of Coleeae (Bignoniaceae) from Madagascar. I. A collection from Masoala Peninsula. Ann Bot Fennici 43:225–239

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farkhondeh Rezanejad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezanejad, F., Ganjalikhani Hakemi, F. Studies of Pollen Characteristics in Plants of Fruitless Tecomella undulata (Sm.) Seem. (Bignoniaceae) in Golparaki Region of Jiroft City, Iran. Iran J Sci Technol Trans Sci 41, 979–988 (2017). https://doi.org/10.1007/s40995-017-0338-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40995-017-0338-2

Keywords

Navigation