Skip to main content
Log in

Kaluza-Klein Tilted Cosmological Model in Lyra Geometry

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions A: Science Aims and scope Submit manuscript

Abstract

Higher-dimensional tilted Bianchi type-I cosmological model is investigated in the frame work of Lyra (Math Z 54:52, 1951) Geometry. Exact solutions to the field equations are derived when the metric potentials are functions of cosmic time only. Some physical and geometrical properties of the solutions are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adhav KS (2011) LRS Bianchi type-I universe with anisotropic dark energy in Lyra geometry. Int J Astron Astrophys 1:204–209

    Article  Google Scholar 

  • Agarwal S, Pandey RK, Pradhan A (2012) Bianchi type-II string cosmological models in normal gauge for Lyra’s manifold with constant deceleration parameter. Indian J Phys 86(1):61–70

    Article  Google Scholar 

  • Akarsu O, Kilinc CB (2010) Bianchi Type III models with anisotropic dark energy. Gen Relat Gravit 42(4):763–775

    Article  MathSciNet  MATH  Google Scholar 

  • Alvarez E, Gavela MB (1983) Entropy from extra dimensions. Phys Rev Lett 51:931–934

    Article  Google Scholar 

  • Aygün S, Aktaṣ C, Yılmaz I (2012) Non-existence of a massive scalar field for the Marder universe in Lyra and Riemannian geometries. J Geom Phys 62(1):100–106

    Article  MathSciNet  MATH  Google Scholar 

  • Aygün S, C̣ag̃lar H, Taṣer D, Aktaṣ C (2015) Quark and strange quark matter solutions for higher dimensional FRW universe in Lyra geometry. Eur Phys J Plus 130:12

  • Bali R, Kumawat P (2010) Bianchi type I tilted cosmological model for barotropic perfect fluid distribution with heat conduction in general relativity. Br J Phys 40(3):261–266

    Google Scholar 

  • Bali R, Sharma K (2000) Tilted Bianchi type I models with heat conduction filled with disordered radiations of perfect fluid in general relativity. Astrophys Space Sci 271:227–235

    Article  MathSciNet  MATH  Google Scholar 

  • Berman MS (1983) A special law of variation for Hubble’s Parameter. Nuovo Cimento B 74:182–186

    Article  Google Scholar 

  • Biswal A, Mahanta KL, Sahoo PK (2015) Kaluza-Klein cosmological model in f (R, T) gravity with domain walls. Astrophys Space Sci 359:42

    Article  Google Scholar 

  • Çağlar H, Aygün S (2016) Exact solutions of bulk viscous with string cloud attached to strange quark matter for higher dimensional FRW universe in Lyra geometry. AIP Conf Proc 1722:050001

    Article  Google Scholar 

  • Chodos A, Detweiler S (1980) Where has the fifth dimension gone. Phys Rev D 21:2167–2170

    Article  Google Scholar 

  • Coley AA, Hervik S (2004) Bianchi cosmologies: a tale of two tilted fluids. Classical and Quantum Gravity 21 (17)

  • Collins CB, Glass EN, Wilkinson DA (1980) Exact spatially homogeneous cosmologies. Gen Relat Gravit 12:805–823

    Article  MathSciNet  MATH  Google Scholar 

  • Ellis GFR (1971) General relativity and cosmology. In: Sachs RK (ed) Academic Press, New York, pp 104–179

  • Ellis GFR, King AR (1974) Was a Big Bang a Whimper. Commun Math Phys 38:119–156

    Article  MathSciNet  Google Scholar 

  • Garnavich PM, Jha S, Challis P, Clocchiatti A, Diercks A, Filippenko AV, Gilliland RL, Hogan CJ, Kirshner RP, Leibundgut B, Phillips MM, Reiss D, Riess AG, Schmidt BP, Schommer RA, Smith RC, Spyromilio J, Stubbs C, Suntzeff NB, Tonry J, Carroll SM (1998) Supernova limits on the cosmic equation of state. Astrophys J 509:74–79

  • Halford WD (1970) Cosmological theory based on Lyra’s geometry. Aust J Phys 23(4):863–869

    Article  Google Scholar 

  • Kantowski R, Sachs RK (1966) Some spatially homogeneous anisotropic relativistic cosmological models. J Math Phys 7:433

    Article  MathSciNet  Google Scholar 

  • Khurshudyan M (2015) Interacting extended Chaplygin gas cosmology in Lyra manifold. Astrophys Space Sci 360:44

    Article  Google Scholar 

  • Kristian J, Sachs RK (1966) Observations in cosmology. Astrophys J 143:379

    Article  MathSciNet  Google Scholar 

  • Lyra G (1951) Über eine Modifikation der Riemannschen Geometrie. Math Z 54(1):52–64

    Article  MathSciNet  MATH  Google Scholar 

  • Mohanty G, Mahanta KL, Sahoo RR (2006) Non-existence of five dimensional perfect fluid cosmological model in Lyra manifold. Astrophys Space Sci 306:269–272

    Article  Google Scholar 

  • Pawar DD, Dagwal VJ (2010) Conformally flat tilted cosmological models in general relativity. Bulg J Phys 37:165–175

    MathSciNet  Google Scholar 

  • Pawar DD, Dagwal VJ (2014) Two fluids tilted cosmological models in general relativity. Int J Theor Phys 53:2441–2450

    Article  MathSciNet  MATH  Google Scholar 

  • Pawar DD, Bhaware SW, Deshmukh AG (2009) Tilted plane symmetric cosmological models with heat conduction and disordered radiation. Rom J Phys 54(1–2):187–194

    Google Scholar 

  • Pawar DD, Dagwal VJ, Solanke YS (2014) Tilted plane symmetric magnetized cosmological models. Prespacetime J 5(5):368–377

    Google Scholar 

  • Perlmutter S (1999) Measurements of ω and λ from 42 high-redshift supernovae. Astrophys J 517:565–586

    Article  MATH  Google Scholar 

  • Pradhan A, Singh AK (2011) Anisotropic bianchi type-I string cosmological models in normal Gauge for Lyra’s manifold with constant deceleration parameter. Int J Theor Phys 50(3):916–933

    Article  MathSciNet  MATH  Google Scholar 

  • Rahaman F, Chakraborty S, Begum N, Hossain M, Kalam M (2002) A study of four and higher-dimensional cosmological models in Lyra geometry. Fizika B11:57–62

    Google Scholar 

  • Rahaman F, Ghosh P, Shekhar S, Mal S (2003) Higher dimensional thick domain wall in Lyra geometry. Astrophys Space Sci 286:373–379

    Article  Google Scholar 

  • Saadat H (2016) A cosmological model of the early universe based on ECG with variable Λ-term in Lyra geometry. Int J Theor Phys 55(5):2364–2375

    Article  MathSciNet  MATH  Google Scholar 

  • Sahni V, Starobinsky A (2006) Reconstructing dark energy. Int J Mod Phys D 15(12):2105–2132

    Article  MathSciNet  MATH  Google Scholar 

  • Sahoo PK, Mishra B (2014) Kaluza-Klein dark energy model in the form of wet dark fluid in f(R, T) gravity. Can J Phys 92:1062–1067

    Article  Google Scholar 

  • Sahoo PK, Mishra B, Tripathy SK (2016) Kaluza-Klein cosmological model in f(R, T) gravity with λ(T). Indian J Phys 90(4):485–493

    Article  Google Scholar 

  • Sahu SK, Kumar T (2013) Tilted Bianchi type-I cosmological model in Lyra geometry. Int J Theor Phys 52:793–797

    Article  MathSciNet  MATH  Google Scholar 

  • Sahu SK, Goda AG, Weldemariam GG (2015) Tilted Bianchi type-VI0 wet dark fluid cosmological model. Astrophys Space Sci 357:134

    Article  Google Scholar 

  • Sahu SK, Kantila EN, Gebru DM (2016) Tilted Bianchi type III wet dark fluid cosmological model in Saez and Ballester theory. Int J Theor Phys 55:526–534

    Article  MATH  Google Scholar 

  • Sen DK (1957) A static cosmological model. Zeitschrift für Physik A Hadrons and Nuclei. 149(3):311–323

    MathSciNet  MATH  Google Scholar 

  • Tegmark M et al (2004) The three-dimensional power spectrum of galaxies from the sloan digital sky survey. Astrophys J 606:702–740

    Article  Google Scholar 

  • Thorne KS (1967) Primordial element formation, primordial magnetic fields, and the isotropy of the universe. Astrophys J 148:51–68

    Article  Google Scholar 

  • Weyl H (1918) Reine Infinitesimalgeometrie. Mathem Zeitschrift 2(3–4):384–411

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

The authors would like to convey their sincere thanks and gratitude to the anonymous referees for their useful and kind suggestions for the improvement of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subrata Kumar Sahu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, S.K., Ganebo, S.G. & Weldemariam, G.G. Kaluza-Klein Tilted Cosmological Model in Lyra Geometry. Iran J Sci Technol Trans Sci 42, 1451–1457 (2018). https://doi.org/10.1007/s40995-017-0178-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40995-017-0178-0

Keywords

Navigation