Skip to main content
Log in

Ramanujan–Shen’s differential equations for Eisenstein series of level 2

  • Research
  • Published:
Research in Number Theory Aims and scope Submit manuscript

Abstract

Ramanujan (1916) and Shen (1999) discovered differential equations for classical Eisenstein series. Motivated by them, we derive new differential equations for Eisenstein series of level 2 from the second kind of Jacobi theta function. This gives a new characterization of a system of differential equations by Ablowitz–Chakravarty–Hahn (2006), Hahn (2008), Kaneko–Koike (2003), Maier (2011), Nidelan (2022) and Toh (2011). As application, we show some arithmetic results on Ramanujan’s tau function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

All data generated during this study are included in this article. We have no conflicts of interest to disclose.

References

  1. Ablowitz, M.J., Chakravarty, S., Hahn, H.: Integrable systems and modular forms of level 2. J. Phys. A 39(50), 15341–15353 (2006)

    Article  MathSciNet  Google Scholar 

  2. Balakrishnan, J.S., Ono, K., Tsai, W.L.: Even values of Ramanujan’s tau-function. Matematica 1(2), 395–403 (2022)

    Article  MathSciNet  Google Scholar 

  3. Bennett, M.A., Gherga, A., Patel, V., Siksek, S.: Odd values of the Ramanujan tau function. Math. Ann. 382(1–2), 203–238 (2022)

    Article  MathSciNet  Google Scholar 

  4. Brundaban, S., Ramakrishnan, B.: Identities for the Ramanujan Tau Function and Certain Convolution Sum Identities for the Divisor Functions. Ramanujan Math. Soc. Lect. Notes Ser., vol. 23, pp. 63–75. Ramanujan Math. Soc., Mysore (2016)

    Google Scholar 

  5. Chan, H.H., Chua, K.S.: Representations of integers as sums of 32 squares. Ramanujan J. Rankin memorial issues 7, 79–89 (2003)

  6. Deligne, P.: La conjecture de Weil I. Inst. Hautes Etudes Sci. Publ. Math. 43, 273–307 (1974)

    Article  MathSciNet  Google Scholar 

  7. Hahn, H.: convolution sums of some functions on divisors. Rocky Mt. J. Math. 37(5), 1593–1622 (2007)

    Article  MathSciNet  Google Scholar 

  8. Hahn, H.: Eisenstein series associated with \(\Gamma _0(2)\). Ramanujan J. 15(2), 235–257 (2008)

    Article  MathSciNet  Google Scholar 

  9. Huard, J.G., Ou, Z.M., Spearman, B.K., Williams, K.S.: Elementary evaluation of certain convolution sums involving divisor functions. Number Theory Millenn. II, 229–274 (2002)

    MathSciNet  Google Scholar 

  10. Imamoḡlu, O., Kohnen, W.: Representations of integers as sums of an even number of squares. Math. Ann. 333(4), 815–829 (2005)

    Article  MathSciNet  Google Scholar 

  11. Kaneko, M., Koike, M.: On modular forms arising from a differential equation of hypergeometric type. Ramanujan J. 7(1–3), 145–164 (2003)

    Article  MathSciNet  Google Scholar 

  12. Lehmer, D.H.: The vanishing of Ramanujan’s \(\tau (n)\). Duke Math. J. 1, 429–433 (1947)

    MathSciNet  Google Scholar 

  13. Lakein, K., Larsen, A.: Some remarks on small values of \(\tau (n)\). Arch. Math. 117(6), 635–645 (2021)

    Article  MathSciNet  Google Scholar 

  14. Maier, R.S.: Nonlinear differential equations satisfied by certain classical modular forms. Manuscr. Math. 134(1–2), 1–42 (2011)

    Article  MathSciNet  Google Scholar 

  15. Milne, S.C.: Hankel determinants of Eisenstein series, Symbolic computation, number theory, special functions, physics and combinatorics. Gainesville, FL (1999). Dev. Math., 4, Kluwer Acad. Publ., Dordrecht, 2001, pp. 171–188

  16. Milne, S.C.: New infinite families of exact sums of squares formulas, Jacobi elliptic functions, and Ramanujan’s tau function. Proc. Natl. Acad. Sci. U.S.A. 93(26), 15004–15008 (1996)

    Article  MathSciNet  Google Scholar 

  17. Mordell, L.J.: On Mr. Ramanujan’s empirical expansions of modular functions. Proc. Camb. Philos. Soc. 19, 117–124 (1917)

    Google Scholar 

  18. Moree, P.: On some claims in Ramanujan’s ‘unpublished’ manuscript on the partition and tau functions. Ramanujan J. 8(3), 317–330 (2004)

    Article  MathSciNet  Google Scholar 

  19. Murty, M.R., Murty, V.K., Shorey, T.N.: Odd values of the Ramanujan \(\tau \)-function. Bull. Soc. Math. Fr. 115(3), 391–395 (1987)

    Article  MathSciNet  Google Scholar 

  20. Nikdelan, Y.: Ramanujan-type systems of nonlinear ODEs for \(\Gamma _{0}(2)\) and \(\Gamma _{0}(3)\). Exp. Math. 40, 409–431 (2022)

    Article  MathSciNet  Google Scholar 

  21. Ramanujan, S.: On certain arithmetical functions. Trans. Camb. Philos. Soc. 22, 159–184 (1916)

    Google Scholar 

  22. Shen, L.C.: On the logarithmic derivative of a theta function and a fundamental identity of Ramanujan. J. Math. Anal. Appl. 177(1), 299–307 (1993)

    Article  MathSciNet  Google Scholar 

  23. Toh, P.C.: Differential equations satisfied by Eisenstein series of level 2. Ramanujan J. 25(2), 179–194 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is based on the author’s talk in Hiroshima-Sendai Number Theory Workshop at Hiroshima University, Japan, in July 2023. He thanks its organizers and the audience who gave valuable comments and suggestions. He is also grateful for the anonymous referees for careful reading and helpful comments to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masato Kobayashi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kobayashi, M. Ramanujan–Shen’s differential equations for Eisenstein series of level 2. Res. number theory 10, 41 (2024). https://doi.org/10.1007/s40993-024-00527-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40993-024-00527-4

Keywords

Mathematics Subject Classification

Navigation