Abstract
We give a classification of all possible 2-adic images of Galois representations associated to elliptic curves over \(\mathbb {Q}\). To this end, we compute the ‘arithmetically maximal’ tower of 2-power level modular curves, develop techniques to compute their equations, and classify the rational points on these curves.
References
Arai, K: On uniform lower bound of the Galois images associated to elliptic curves. J. Théor. Nombres Bordeaux. 20(1), 23–43 (2008). http://jtnb.cedram.org/item?id=JTNB_2008__20_1_23_0.
Baran, B: A modular curve of level 9 and the class number one problem. J. Number Theory. 129(3), 715–728 (2009). doi:10.1016/j.jnt.2008.09.013.
Baran, B: Normalizers of non-split Cartan subgroups, modular curves, and the class number one problem. J. Number Theory. 130(12), 2753–2772 (2010). doi:10.1016/j.jnt.2010.06.005.
Baran, B: An exceptional isomorphism between modular curves of level 13. J. Number Theory. 145, 273–300 (2014).
Bröker, R, Lauter, K, Sutherland, AV: Modular polynomials via isogeny volcanoes. Math. Comp. 81(278), 1201–1231 (2012). doi:10.1090/S0025-5718-2011-02508-1.
Bilu, Y, Parent, P, Rebolledo, M: Rational points on \(X_{0}^{+} (p^{r})\) (2011). arXiv:1104.4641, Preprint.
Bruin, N, Poonen, Bj, Stoll, M: Generalized explicit descent and its application to curves of genus, 3 (2012). Preprint.
Bruin, N: Chabauty methods using elliptic curves. J. Reine Angew. Math. 562, 27–49 (2003).
Bruin, N: Some ternary Diophantine equations of signature (n,n,2). In: Discovering mathematics with Magma, Algorithms Comput. Math. vol. 19, pp. 63–91. Springer, Berlin (2006). doi:10.1007/978-3-540-37634-7_3.
Bruin, N: The arithmetic of Prym varieties in genus 3. Compos. Math. 144(2), 317–338 (2008). doi:10.1112/S0010437X07003314.
Bruin, N, Stoll, M: Deciding existence of rational points on curves: an experiment, Experiment. Math. 17(2), 181–189 (2008). http://projecteuclid.org/getRecord?id=euclid.em/1227118970.
Coombes, KR, Grant, DR: On heterogeneous spaces. J. London Math. Soc. (2). 40(3), 385–397 (1989). doi:10.1112/jlms/s2-40.3.385.
Chen, I: On Siegel’s modular curve of level 5 and the class number one problem. J. Number Theory. 74(2), 278–297 (1999). doi:10.1006/jnth.1998.2320.
Cohen, H: Number theory. Vol. I. Tools and Diophantine equations. Graduate Texts in Mathematics, Vol. 239. Springer, New York (2007).
Cummins, CJ, Pauli, S: Congruence subgroups of PSL(2,ℤ) of genus less than or equal to 24. Experiment. Math. 12(2), 243–255 (2003). http://projecteuclid.org/getRecord?id=euclid.em/1067634734.
Dokchitser, T, Dokchitser, V: Surjectivity of mod 2n representations of elliptic curves. Math. Z. 272(3-4), 961–964 (2012). doi:10.1007/s00209-011-0967-7.
Dokchitser, T, Dokchitser, V: Identifying Frobenius elements in Galois groups. Algebra Number Theory. 7(6), 1325–1352 (2013). doi:10.2140/ant.2013.7.1325.
Deligne, P, Rapoport, M: Les schémas de modules de courbes elliptiques. In: Modular functions of one variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), Lecture Notes in Math, pp. 143–316. Springer, Berlin (1973).
Diamond, F, Shurman, J: A first course in modular forms: Graduate Texts in Mathematics, Vol. 228. Springer-Verlag, New York (2005).
Elkies, ND: Elliptic curves with 3-adic galois representation surjective mod 3 but not mod 9 (2006). Preprint.
Flynn, EV, Wetherell, JL: Covering collections and a challenge problem of Serre. Acta Arith. 98(2), 197–205 (2001). doi:10.4064/aa98-2-9.
González-Jiménez, E, González, J: Modular curves of genus 2, Vol. 72 (2003). doi:10.1090/S0025-5718-02-01458-8.
González-Jiménez, E, Lozano-Robledo, Á: Elliptic curves with abelian division fields. Preprint.
Hecke, E: Theorie der Eisensteinschen Reihen höherer Stufe und ihre Anwendung auf Funktionentheorie und Arithmetik. Abh. Math. Sem. Univ. Hamburg. 5(1), 199–224 (1927). doi:10.1007/BF02952521.
Heegner, K: Diophantische Analysis und Modulfunktionen. Math. Z. 56, 227–253 (1952).
Jones, JW: Number fields unramified away from 2. J. Number Theory. 130(6), 1282–1291 (2010). doi:10.1016/j.jnt.2010.02.005.
Jones, R, Rouse, J: Galois theory of iterated endomorphisms. Proc. Lond. Math. Soc. (3). 100(3), 763–794 (2010). doi:10.1112/plms/pdp051. Appendix A by Jeffrey D. Achter.
Kenku, MA: A note on the integral points of a modular curve of level 7. Mathematika. 32(1), 45–48 (1985). doi:10.1112/S0025579300010846.
Knapp, AW: Elliptic curves. Mathematical Notes, Vol. 40. Princeton University Press, Princeton, NJ (1992).
Mazur, B: Rational points on modular curves. In: Modular functions of one variable, V (Proc. Second Internat. Conf., Univ. Bonn, Bonn, 1976), pp. 107–148. Springer, Berlin (1977).
Mazur, B: Rational isogenies of prime degree (with an appendix by D. Goldfeld). Invent. Math. 44(2), 129–162 (1978).
McMurdy, K: Explicit equations for X0(N). http://phobos.ramapo.edu/~kmcmurdy/research/Models/index.html.
Momose, F: Rational points on the modular curves Xsplit(p). Compositio Math. 52(1), 115–137 (1984). http://www.numdam.org/item?id=CM_1984__52_1_115_0.
McCallum, W, Poonen, B: The method of Chabauty and Coleman. Soc. Math., France, Paris (2012).
Nishioka, K: The 2-adic representations attached to elliptic curves defined over Q whose points of order 2 are all Q-rational. J. Math. Soc. Japan. 35(2), 191–219 (1983). doi:10.2969/jmsj/03520191.
Poonen, B: Computing rational points on curves. In: Number theory for the millennium, III (Urbana, IL, 2000), pp. 149–172. A K Peters, Natick, MA (2002).
Poonen, B, Schaefer, EF: Explicit descent for Jacobians of cyclic covers of the projective line. J. Reine Angew. Math. 488, 141–188 (1997).
Rouse, J, Zureick-Brown, D: Electronic transcript of computations for the paper ‘Elliptic curves over \(\mathbb {Q}\) and 2-adic images of Galois’. Available at, http://users.wfu.edu/rouseja/2adic/. (Data files and scripts will also be posted on arXiv).
Serre, J-P: Propriétés Galoisiennes des points d’ordre fini des courbes elliptiques. Invent. Math. 15(4), 259–331 (1972).
Serre, J-P: Lectures on the Mordell-Weil theorem. Translated from the French and edited by Martin Brown from notes by Michel Waldschmidt. With a foreword by Brown and Serre. 3rd ed. Aspects of Mathematics. Friedr. Vieweg & Sohn, Braunschweig (1997). x+218 pp. ISBN: 3-528-28968-6 MR1757192(2000m:11049).
Shimura, G: Introduction to the arithmetic theory of automorphic functions. In: Publications of the Mathematical Society of Japan, No. 11. Iwanami Shoten, Publishers, Tokyo (1971). Kanô Memorial Lectures, No. 1.
Shimura, M: Defining equations of modular curves X0(N). Tokyo J. Math. 18(2), 443–456 (1995). doi:10.3836/tjm/1270043475.
Silverman, JH: The arithmetic of elliptic curves, Second edition, Graduate Texts in Mathematics, Vol. 106. Springer, Dordrecht (2009).
Skorobogatov, A: Torsors and rational points, Cambridge Tracts in Mathematics, Vol. 144. Cambridge University Press, Cambridge (2001). http://dx.doi.org.ezproxy.library.wisc.edu/10.1017/CBO9780511549588.
Schoof, R, Tzanakis, N: Integral points of a modular curve of level 11. Acta Arith. 152(1), 39–49 (2012). doi:10.4064/aa152-1-4.
Stoll, M: Implementing 2-descent for Jacobians of hyperelliptic curves. Acta Arith. 98(3), 245–277 (2001). doi:10.4064/aa98-3-4.
Sutherland, AV: Constructing elliptic curves over finite fields with prescribed torsion. Math. Comp. 81(278), 1131–1147 (2012). doi:10.1090/S0025-5718-2011-02538-X.
Sutherland, AV: Computing images of Galois representations attached to elliptic curves (2015). arXiv:1504.07618, Preprint.
Sutherland, A: Defining equations for X1(N). http://math.mit.edu/~drew/X1_altcurves.html.
Stoll, M, van Luijk, R: Explicit Selmer groups for cyclic covers of ℙ 1. Acta Arith. 159(2), 133–148 (2013). doi:10.4064/aa159-2-4.
Sutherland, A, Zywina, D: Modular curves of genus zero and prime-power level. in preparation.
Wetherell, JL: Bounding the number of rational points on certain curves of high rank. ProQuest LLC, Ann Arbor, MI (1997). http://search.proquest.com/docview/304343505. Thesis (Ph.D.)--University of California, Berkeley
Wilson, JS: Profinite groups. London Mathematical Society Monographs. New Series. The Clarendon Press Oxford University Press, New York (1998).
Zywina, D: On the surjectivity of mod l representations associated to elliptic curves (2011). Preprint.
Acknowledgments
We thank Jeff Achter, Nils Bruin, Tim Dokchitser, Bjorn Poonen, William Stein, Michael Stoll, Drew Sutherland, and David Zywina for useful conversations and University of Wisconsin-Madison’s Spring 2011 CURL (Collaborative undergraduate research Labs) students (Eugene Yoong, Collin Smith, Dylan Blanchard) for doing initial group theoretical computations. The second author is supported by an NSA Young Investigator grant. We would also like to thank anonymous referees for helpful comments and suggestions that have improved the paper.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.
About this article
Cite this article
Rouse, J., Zureick-Brown, D. Elliptic curves over \(\mathbb {Q}\) and 2-adic images of Galois. Res. Number Theory 1, 12 (2015). https://doi.org/10.1007/s40993-015-0013-7
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s40993-015-0013-7
Keywords
- Conjugacy Class
- Elliptic Curve
- Rational Point
- Maximal Subgroup
- Elliptic Curf