Skip to main content

Fine Selmer Groups and Isogeny Invariance

  • Conference paper
  • First Online:
Geometry, Algebra, Number Theory, and Their Information Technology Applications (GANITA 2016)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 251))

Abstract

We investigate fine Selmer groups for elliptic curves and for Galois representations over a number field. More specifically, we discuss a conjecture, which states that the fine Selmer group of an elliptic curve over the cyclotomic extension is a finitely generated \(\mathbb {Z}_p\)-module. The relationship between this conjecture and Iwasawa’s classical \(\mu =0\) conjecture is clarified. We also present some partial results towards the question whether the conjecture is invariant under isogenies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Billot, Quelques aspects de la descente sur une courbe elliptique dans le cas de réduction supersingulière, Compositio Math. 58 (1986), no. 3, 341–369.

    MathSciNet  MATH  Google Scholar 

  2. A. Chandrakant, On the \(\mu \)-invariant of fine Selmer groups, J. Number Theory 135 (2014), 284–300.

    Article  MathSciNet  Google Scholar 

  3. J. Coates and R. Sujatha, Fine Selmer groups for elliptic curves with complex multiplication, Algebra and number theory, Hindustan Book Agency, Delhi, 2005, pp. 327–337.

    MATH  Google Scholar 

  4. T. Fukaya and K. Kato, A formulation of conjectures on \(p\)-adic zeta functions in non-commutative Iwasawa theory, Proceedings of the St. Petersburg Mathematical Society (Providence, RI), vol. XII, Amer. Math. Soc. Transl. Ser. 2, no. 219, American Math. Soc., 2006, pp. 1–85.

    Google Scholar 

  5. R. Greenberg, The structure of Selmer groups, Proc. Nat. Acad. Sci. U.S.A. 94 (1997), no. 21, 11125–11128, Elliptic curves and modular forms (Washington, DC, 1996).

    Google Scholar 

  6. R. Greenberg, Iwasawa theory, projective modules, and modular representations, Mem. Amer. Math. Soc. 211 (2011), no. 992, vi+185.

    Google Scholar 

  7. S. Jha, Fine Selmer group of Hida deformations over non-commutative \(p\)-adic Lie extensions, Asian J. Math. 16 (2012), no. 2, 353–365.

    Article  MathSciNet  Google Scholar 

  8. S. Jha and R. Sujatha, On the Hida deformations of fine Selmer groups, J. Algebra 338 (2011), 180–196.

    Article  MathSciNet  Google Scholar 

  9. M. F. Lim, Notes on fine Selmer groups, preprint, arXiv:1306.2047v3, 2013.

  10. J. S. Milne, Arithmetic duality theorems, second ed., BookSurge, LLC, Charleston, SC, 2006.

    MATH  Google Scholar 

  11. J. Neukirch, Algebraic number theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 322, Springer-Verlag, Berlin, 1999, Translated from the 1992 German original and with a note by Norbert Schappacher, With a foreword by G. Harder.

    Google Scholar 

  12. J. Neukirch, A. Schmidt, and K. Wingberg, Cohomology of number fields, Grundlehren der mathematischen Wissenschaften, no. 323, Springer Verlag, Berlin Heidelberg, 2000.

    Google Scholar 

  13. J. L. Parish, Rational torsion in complex-multiplication elliptic curves, J. Number Theory 33 (1989), no. 2, 257–265.

    Article  MathSciNet  Google Scholar 

  14. B. Perrin-Riou, \(p\)-adic \(L\)-functions and \(p\)-adic representations, SMF/AMS Texts and Monographs, vol. 3, American Mathematical Society, Providence, RI; Société Mathématique de France, Paris, 2000, Translated from the 1995 French original by Leila Schneps and revised by the author.

    Google Scholar 

  15. P. Schneider, \(p\)-adic height pairings. II, Invent. Math. 79 (1985), no. 2, 329–374.

    Article  MathSciNet  Google Scholar 

  16. J. H. Silverman, The arithmetic of elliptic curves, second ed., Graduate Texts in Mathematics, vol. 106, Springer, Dordrecht, 2009.

    Book  Google Scholar 

  17. R. Sujatha, Elliptic curves and Iwasawa’s \(\mu =0\)conjecture, Quadratic forms, linear algebraic groups, and cohomology, Dev. Math. vol. 18, Springer, New York, 2010, pp. 125–135.

    Chapter  Google Scholar 

  18. M. Witte, On a localisation sequence for the K-theory of skew power series rings, J. K-Theory 11 (2013), no. 1, 125–154.

    Article  MathSciNet  Google Scholar 

  19. M. Witte, On a noncommutative Iwasawa main conjecture for varieties over finite fields, J. Eur. Math. Soc. (JEMS) 16 (2014), no. 2, 289–325.

    Article  MathSciNet  Google Scholar 

  20. C. Wuthrich, Iwasawa theory of the fine Selmer group, J. Algebraic Geom. 16 (2007), no. 1, 83–108.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Sujatha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sujatha, R., Witte, M. (2018). Fine Selmer Groups and Isogeny Invariance. In: Akbary, A., Gun, S. (eds) Geometry, Algebra, Number Theory, and Their Information Technology Applications. GANITA 2016. Springer Proceedings in Mathematics & Statistics, vol 251. Springer, Cham. https://doi.org/10.1007/978-3-319-97379-1_19

Download citation

Publish with us

Policies and ethics