Skip to main content

Advertisement

SpringerLink
Modular forms with large coefficient fields via congruences
Download PDF
Download PDF
  • Research Article
  • Open Access
  • Published: 29 May 2015

Modular forms with large coefficient fields via congruences

  • Luis Víctor Dieulefait1,
  • Jorge Jiménez Urroz2 &
  • Kenneth Alan Ribet3 

Research in Number Theory volume 1, Article number: 2 (2015) Cite this article

  • 2013 Accesses

  • 2 Citations

  • 1 Altmetric

  • Metrics details

Abstract

We use the theory of congruences between modular forms to prove the existence of newforms with square-free level having a fixed number of prime factors such that the degree of their coefficient fields is arbitrarily large. We also prove a similar result for certain almost square-free levels.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. Brumer, A: The rank of J 0(N). Columbia University Number Theory Seminar (New York, 1992). Astérisque No. 228. 3, 41–68 (1995).

    MathSciNet  Google Scholar 

  2. Chen, JR: On the representation of a larger even integer as the sum of a prime and the product of at most two primes. Sci. Sinica. 16, 157–176 (1973).

    MATH  MathSciNet  Google Scholar 

  3. Darmon, H: Serre’s conjectures. In: Kumar Murty, V (ed.)Seminar on Fermat’s Last Theorem, number 17 in CMS Conference Proceedings, pp. 135–153. AMS, Providence, RI (1995).

    Google Scholar 

  4. Diamond, F, Taylor, R: Nonoptimal levels of mod l modular representations. Invent. Math. 115(3), 435–462 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  5. Dieulefait, L, Jiménez-Urroz, J: Solving Fermat-type equations x 4+d y 2=z p via modular Q-curves over polyquadratic fields. J. Reine Angew. Math. 633, 183–196 (2009).

    MATH  MathSciNet  Google Scholar 

  6. Ellenberg, JS: Galois representations attached to \(\mathbb Q\)-curves and the generalized Fermat equation A 4+B 2=C p. Am. J. Math. 126(4), 763–787 (2004).

  7. Friedlander, JB, Iwaniec, H: Asymptotic sieve for primes. Ann. Math. 148, 1041–1065 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  8. Friedlander, JB, Iwaniec, H: The polynomial X 2+Y 4 captures its primes. Ann. Math. 148(3), 965–1040 (1998).

    Google Scholar 

  9. Heath-Brown, DR: Primes represented by x 3+2y 3. Acta Math. 186(1), 1–84 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  10. Heath-Brown, DR, Moroz, B: Primes represented by binary cubic forms. Proc. London Math. Soc. 84(2), 257–288 (2002).

    Article  MathSciNet  Google Scholar 

  11. Mazur, B: Modular curves and the Eisenstein ideal. Inst. Hautes Études Sci. Publ. Math. 47, 33–186 (1977).

    Article  MATH  MathSciNet  Google Scholar 

  12. Ogg, AP: Hyperelliptic modular curves. Bull. Soc. Math. France. 102, 449–462 (1974).

    MATH  MathSciNet  Google Scholar 

  13. Ribet, KA: Raising the levels of modular representations. Séminaire de Théorie des Nombres, Paris 1987-88, 259–271, Progr, Math., 81. MA, Birkhauser Boston, Boston (1990).

    Google Scholar 

  14. Ribet, KA: On modular representations of \(\text {Gal}(\overline {\mathbb Q}/{\mathbb Q})\) arising from modular forms. Invent. Math. 100(2), 431–476 (1990).

  15. Saito, H: On a decomposition of spaces of cusp forms and trace formula of Hecke operators. Nagoya. Math. J. 80, 129–165 (1980).

    MATH  Google Scholar 

  16. Serre, JP: Répartition asymptotique des valeurs propres de l’operateur de Hecke T p . J. AMS. 10(1), 75–102 (1997).

    MATH  Google Scholar 

  17. Wiles, A: Modular elliptic curves and Fermat’s last theorem. Ann. Math. 141(3), 443–551 (1995).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgement

First named author partially supported by grant MTM2012-33830 and by an ICREA Academia prize, second by DGICYT Grant MTM2009-11068.

Author information

Authors and Affiliations

  1. Departament d’Algebra i Geometria, Universitat de Barcelona, Gran Via de les Corts Catalanes 585, Barcelona, 08007, Spain

    Luis Víctor Dieulefait

  2. Departament de Matemàtica Aplicada IV, Universitat Politècnica de Catalunya (UPC), Edifici C3-Campus Nord, Jordi Girona, Barcelon, 1-3 E-08034, Spain

    Jorge Jiménez Urroz

  3. Department of Mathematics 3840, University of California, CA, Berkeley, 94720-3840, USA

    Kenneth Alan Ribet

Authors
  1. Luis Víctor Dieulefait
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Jorge Jiménez Urroz
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Kenneth Alan Ribet
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Luis Víctor Dieulefait.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

The three authors have contributed to this work in equal parts. All authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dieulefait, L.V., Urroz, J.J. & Ribet, K.A. Modular forms with large coefficient fields via congruences. Res. number theory 1, 2 (2015). https://doi.org/10.1007/s40993-015-0003-9

Download citation

  • Received: 08 October 2014

  • Accepted: 16 December 2014

  • Published: 29 May 2015

  • DOI: https://doi.org/10.1007/s40993-015-0003-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Modular Form
  • Elliptic Curf
  • Diophantine Equation
  • Galois Representation
  • Multiplicative Function
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.