Skip to main content
Log in

3D concrete printing success: an exhaustive diagnosis and failure modes analysis

  • Review Article
  • Published:
Progress in Additive Manufacturing Aims and scope Submit manuscript

Abstract

This article seeks to implement quality management tools within 3D concrete printing (3DCP) to propose a generative failure mode analysis which was rarely applied to 3DCP realm. Actually, 3DCP technologies have become a set of emergent processes that are used worldwide in many applications inasmuch as they are generating profits but also costs due to its infancy stage. Since 3DCP processes are a versatile domain, this investigation started with an extended state-of-art that allowed listing the most significant process and machines factors that are involved in the success of the printing. Based on main printing principles, printability, extrudability, and buildability, number of associated failures were listed and then organized in terms of cause/effect (Ishikawa) diagrams and SWOT matrices; thereafter, fault tree analysis (FTA) was proposed as a generic way to fit number of 3DCP failures’ analysis. Furthermore, the approach was projected on existing researches; four case studies were applied and the corresponding FTAs were built to evince the proposed methodology. Hence, it was proved that the risk analysis approach built herein could be adapted to real 3DCP applications by associating the corresponding fault trees; the FTA diagrams should graphically facilitate the failure modes mechanisms within 3DCP applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  1. Al-Noaimat YA, Ghaffar SH, Chougan M, Al-Kheetan MJ (2022) A review of 3D printing low-carbon concrete with one-part geopolymer: engineering, environmental and economic feasibility. Case Stud Constr Mater 18(e01818):2023. https://doi.org/10.1016/j.cscm.2022.e01818

    Article  Google Scholar 

  2. Opoku SAA, Deng J, Elmualim A, Ekung S, Hussien AA (2022) Sustainable procurement in construction and the realisation of the sustainable development goal (SDG) 12. J Clean Prod 376:134294. https://doi.org/10.1016/j.jclepro.2022.134294

    Article  Google Scholar 

  3. Wu P, Wang J, Wang X (2016) A critical review of the use of 3-D printing in the construction industry. Autom Constr 68:21–31. https://doi.org/10.1016/j.autcon.2016.04.005

    Article  Google Scholar 

  4. Poudelet L, Molina MG, Calvo L et al (2023) Comparison between mono- and bi-component extruders in concrete additive manufacturing. Prog Addit Manuf 8:37–46. https://doi.org/10.1007/s40964-022-00383-7

    Article  Google Scholar 

  5. Wang L, Jiang H, Li Z et al (2020) Mechanical behaviors of 3D printed lightweight concrete structure with hollow section. Archiv Civ Mech Eng 20:16. https://doi.org/10.1007/s43452-020-00017-1

    Article  Google Scholar 

  6. ISO, ASTM 52900:2015 (2015) Standard terminology for additive manufacturing—general principles—terminology. International Organization for Standardization, Geneva

    Google Scholar 

  7. Baigarina A, Shehab E, Ali MH (2023) Construction 3D printing: a critical review and future research directions. Prog Addit Manuf 8:1393–1421. https://doi.org/10.1007/s40964-023-00409-8

    Article  Google Scholar 

  8. El Jai M, Akhrif I, Saidou N (2021) Skeleton-based perpendicularly scanning: a new scanning strategy for additive manufacturing, modeling and optimization. Prog Addit Manuf 6:781–820. https://doi.org/10.1007/s40964-021-00197-z

    Article  Google Scholar 

  9. Rehman J-HKAU (2021) 3D concrete printing: a systematic review of rheology, mix designs, mechanical, microstructural, and durability characteristics. Materials (Basel) 14(14):1–43. https://doi.org/10.3390/ma14143800

    Article  Google Scholar 

  10. Zhong H, Zhang M (2021) 3D printing geopolymers: a review. Cem Concr Compos 128:104455. https://doi.org/10.1016/j.cemconcomp.2022.104455

    Article  Google Scholar 

  11. Mohan MK, Rahul AV, Van Tittelboom K, De Schutter G (2020) Rheological and pumping behaviour of 3D printable cementitious materials with varying aggregate content. Cem Concr Res 139(April):2021. https://doi.org/10.1016/j.cemconres.2020.106258

    Article  Google Scholar 

  12. Al-Kutti W, Nasir M, Megat Johari MA, Islam ABMS, Manda AA, Blaisi NI (2018) An overview and experimental study on hybrid binders containing date palm ash, fly ash, OPC and activator composites. Constr Build Mater 159:567–577. https://doi.org/10.1016/j.conbuildmat.2017.11.017

    Article  Google Scholar 

  13. Panda B, Paul SC, Hui LJ, Tay YWD, Tan MJ (2017) Additive manufacturing of geopolymer for sustainable built environment. J Clean Prod 167:281–288. https://doi.org/10.1016/j.jclepro.2017.08.165

    Article  Google Scholar 

  14. Matsimbe J, Dinka M, Olukanni D, Musonda I (2022) Geopolymer: a systematic review of methodologies. Materials (Basel) 15(19):6852. https://doi.org/10.3390/ma15196852

    Article  Google Scholar 

  15. de Valencia-Saavedra RMGW, Robayo-Salazar R (2021) Alkali-activated hybrid cements based on fly ash and construction and demolition wastes using sodium sulfate and sodium carbonat. Molecules 26(24):7572. https://doi.org/10.3390/molecules26247572

    Article  Google Scholar 

  16. Sheeja TV, Jebadurai SVS, Tensing D (2022) Additive manufacturing techniques in construction. Res Eng Struct Mater 8(3):535–551. https://doi.org/10.17515/resm2022.386ma1401

    Article  Google Scholar 

  17. Shi C, Wu Z, Xiao J, Wang D, Huang Z, Fang Z (2015) A review on ultra high performance concrete: part I. Raw materials and mixture design. Constr Build Mater 101:741–751. https://doi.org/10.1016/j.conbuildmat.2015.10.088

    Article  Google Scholar 

  18. El Sayegh S, Manjikian LRS (2020) A critical review of 3D printing in construction : benefits, challenges, and risks. Arch Civ Mech Eng 20(34):1–25. https://doi.org/10.1007/s43452-020-00038-w

    Article  Google Scholar 

  19. Paolini A, Kollmannsberger S, Rank E (2019) Additive manufacturing in construction : a review on processes, applications, and digital planning methods. Addit Manuf 30:100894. https://doi.org/10.1016/j.addma.2019.100894

    Article  Google Scholar 

  20. Nematollahi JSB, Xia M (2017) Current progress of 3D concrete printing technologies. In: ISARC. Proceedings of the international symposium on automation and robotics in construction, vol 34, no. IAARC Publications. https://doi.org/10.22260/ISARC2017/0035.

  21. Baş H, Elevli S, Yapıcı F (2019) Fault tree analysis for fused filament fabrication type three-dimensional printers. J Fail Anal Prev 19(5):1389–1400. https://doi.org/10.1007/s11668-019-00735-6

    Article  Google Scholar 

  22. Zagidullin NZR, Antipov D, Dmitriev A (2021) Development of a methodology for eliminating failures of an FDM 3D printer using a ‘failure tree’ and FMEA analysis. J Phys Conf Ser 1925(1):0128085. https://doi.org/10.1088/1742-6596/1925/1/012085

    Article  Google Scholar 

  23. Peeters JFW, Basten RJI, Tinga T (2018) Improving failure analysis efficiency by combining FTA and FMEA in a recursive manner. Reliab Eng Syst Saf 172:36–44. https://doi.org/10.1016/j.ress.2017.11.024

    Article  Google Scholar 

  24. Yusoff FAW, Yusmawiza WA, Sa’edun M (2009) The application of rapid prototyping technology and FMEA quality tool in the development of automotive component. In: International conference on advances in materials & processing technology, Kuala Lumpu, pp 26–29. 107352577

  25. Khalil A, Wang X, Celik K (2019) 3D printable magnesium oxide concrete: towards sustainable modern architecture. Addit Manuf 33(November):2020. https://doi.org/10.1016/j.addma.2020.101145

    Article  Google Scholar 

  26. Long WJ et al (2019) Rheology and buildability of sustainable cement-based composites containing micro-crystalline cellulose for 3D-printing. J Clean Prod 239:118054. https://doi.org/10.1016/j.jclepro.2019.118054

    Article  Google Scholar 

  27. Nunes GM, Anjos MA, Lins AB, Negreiros AM, Pessoa LR (2023) Evaluation of the mechanical behaviour of representative volumetric elements of 3DCP masonry mixtures with partial replacement of cement by limestone filler and metakaolin. J Build Eng 78:107650. https://doi.org/10.1016/j.jobe.2023.107650

    Article  Google Scholar 

  28. Rehman AU, Birru BM, Kim JH (2023) Set-on-demand 3D Concrete Printing (3DCP) construction and potential outcome of shotcrete accelerators on its hardened properties. Case Stud Constr Mater 18:e01955. https://doi.org/10.1016/j.cscm.2023.e01955

    Article  Google Scholar 

  29. Li ARZ, Hojati M, Wu Z, Piasente J, Ashrafi N, Duarte JP, Nazarian S, Bilén SG, Memari AM (2020) Fresh and hardened properties of extrusion-based 3D-printed cementitious materials: a review. Sustainability 12(14):1–33. https://doi.org/10.3390/su12145628

    Article  Google Scholar 

  30. Hou S, Duan Z, Xiao J, Ye J (2021) A review of 3D printed concrete: performance requirements, testing measurements and mix design. Constr Build Mater 273:121745. https://doi.org/10.1016/j.conbuildmat.2020.121745

    Article  Google Scholar 

  31. Ze Chang BS, Chen Y, Schlangen E (2023) A review of methods on buildability quantification of extrusion-based 3D concrete printing: from analytical modelling to numerical simulation. Dev Built Environ 16:100241. https://doi.org/10.1016/j.dibe.2023.100241

    Article  Google Scholar 

  32. Chang Z, Xu Y, Chen Y, Gan Y, Schlangen E, Šavija B (2021) A discrete lattice model for assessment of buildability performance of 3D-printed concrete. Comput Civ Infrastruct Eng 36(5):638–655. https://doi.org/10.1111/mice.12700

    Article  Google Scholar 

  33. Kaszyńska TWM, Hoffmann M, Skibicki S, Zieliński A, Techman M, Olczyk N (2018) Evaluation of suitability for 3D printing of high performance concretes. MATEC Web Conf 163:1002. https://doi.org/10.1051/matecconf/201816301002

    Article  Google Scholar 

  34. Kanagasuntharam S, Ramakrishnan S, Muthukrishnan S, Sanjayan J (2023) Effect of magnetorheological additives on the buildability of 3D concrete printing. J Build Eng 74:106814. https://doi.org/10.1016/j.jobe.2023.106814

    Article  Google Scholar 

  35. Quah TKN, Tay YWD, Lim JH, Tan MJ, Wong TN, Li KHH (2023) Concrete 3D printing: process parameters for process control, monitoring and diagnosis in automation and construction. Mathematics 11(6):1499. https://doi.org/10.3390/math11061499

    Article  Google Scholar 

  36. Suiker ASJ, Wolfs RJM, Lucas SM, Salet TAM (2020) Elastic buckling and plastic collapse during 3D concrete printing. Cem Concr Res 135:106016. https://doi.org/10.1016/j.cemconres.2020.106016

    Article  Google Scholar 

  37. Liu J, Li S, Fox K, Tran P (2022) 3D concrete printing of bioinspired Bouligand structure: a study on impact resistance. Addit Manuf 50(July):2022. https://doi.org/10.1016/j.addma.2021.102544

    Article  Google Scholar 

  38. Shakor P, Nejadi S, Paul G (2019) A study into the effect of different nozzles shapes and fibre-reinforcement in 3D printed mortar. Materials (Basel) 12(10):1708. https://doi.org/10.3390/MA12101708

    Article  Google Scholar 

  39. Manikandan K, Wi K, Zhang X, Wang K, Qin H (2020) Characterizing cement mixtures for concrete 3D printing. Manuf Lett 24:33–37. https://doi.org/10.1016/j.mfglet.2020.03.002

    Article  Google Scholar 

  40. Chen Y, Li Z, Figueiredo SC, Çopuroğlu O, Veer F, Schlangen E (2019) Limestone and calcined clay-based sustainable cementitious materials for 3D concrete printing: a fundamental study of extrudability and early-age strength development. Appl Sci 9(9):1809. https://doi.org/10.3390/app9091809

    Article  Google Scholar 

  41. Malaeb Z, Hachem H, Tourbah A, Maalouf T, El Zarwi N, Hamzeh F (2015) 3D concrete printing: machine and mix design. Int J Civ Eng Technol 6(April):14–22

    Google Scholar 

  42. Youn J, Jeong K, Kim J, Kim H, Lee D (2023) Development of concrete extrusion nozzle for producing free-form concrete panels and extrusion test. Buildings 13(3):784. https://doi.org/10.3390/buildings13030784

    Article  Google Scholar 

  43. Pan T, Jiang Y, He H, Wang Y, Yin K (2021) Effect of structural build-up on interlayer bond strength of 3D printed cement mortars. Materials (Basel) 14(2):1–17. https://doi.org/10.3390/ma14020236

    Article  Google Scholar 

  44. Keita E, Bessaies-Bey H, Zuo W, Belin P, Roussel N (2018) Weak bond strength between successive layers in extrusion-based additive manufacturing: measurement and physical origin. Cem Concr Res 123(November):2019. https://doi.org/10.1016/j.cemconres.2019.105787

    Article  Google Scholar 

  45. Chen ESY, Jansen K, Zhang H, Rodriguez CR, Gan Y, Çopuroğlu O (2020) Effect of printing parameters on interlayer bond strength of 3D printed limestone-calcined clay-based cementitious materials: an experimental and numerical study. Constr Build Mater 262:120094. https://doi.org/10.1016/j.conbuildmat.2020.120094

    Article  Google Scholar 

  46. Liu J, Tran P, Nguyen Van V, Gunasekara C, Setunge S (2023) 3D printing of cementitious mortar with milled recycled carbon fibres: Influences of filament offset on mechanical properties. Cem Concr Compos 142:105169. https://doi.org/10.1016/j.cemconcomp.2023.105169

    Article  Google Scholar 

  47. Arunothayan AR, Nematollahi B, Ranade R, Bong SH, Sanjayan J (2020) Development of 3D-printable ultra-high performance fiber-reinforced concrete for digital construction. Constr Build Mater 257:119546. https://doi.org/10.1016/j.conbuildmat.2020.119546

    Article  Google Scholar 

  48. Arunothayan AR, Nematollahi B, Ranade R, Bong SH, Sanjayan JG, Khayat KH (2020) Fiber orientation effects on ultra-high performance concrete formed by 3D printing. Cem Concr Res 143(November):2021. https://doi.org/10.1016/j.cemconres.2021.106384

    Article  Google Scholar 

  49. Weng SQY, Ruan S, Li M, Mo L, Unluer C, Tan MJ (2019) Feasibility study on sustainable magnesium potassium phosphate cement paste for 3D printing. Constr Build Mater 221:595–603. https://doi.org/10.1016/j.conbuildmat.2019.05.053

    Article  Google Scholar 

  50. Quanji Z, Lomboy GR, Wang K (2014) Influence of nano-sized highly purified magnesium alumino silicate clay on thixotropic behavior of fresh cement pastes. Constr Build Mater 69:295–300. https://doi.org/10.1016/j.conbuildmat.2014.07.050

    Article  Google Scholar 

  51. Yuan CSQ, Li Z, Zhou D, Huang T, Huang H, Jiao D (2019) A feasible method for measuring the buildability of fresh 3D printing mortar. Constr Build Mater 227:116600. https://doi.org/10.1016/j.conbuildmat.2019.07.326

    Article  Google Scholar 

  52. Kruger J, Zeranka S, van Zijl G (2019) An ab initio approach for thixotropy characterisation of (nanoparticle-infused) 3D printable concrete. Constr Build Mater 224:372–386. https://doi.org/10.1016/j.conbuildmat.2019.07.078

    Article  Google Scholar 

  53. Robayo-Salazar R, Martínez F, Vargas A, Mejía de Gutiérrez R (2023) 3D printing of hybrid cements based on high contents of powders from concrete, ceramic and brick waste chemically activated with sodium sulphate (Na2SO4). Sustainability 15(13):9900. https://doi.org/10.3390/su15139900

    Article  Google Scholar 

  54. Ziejewska MHC, Marczyk J, Korniejenk K, Bednarz S, Sroczyk P, Lach M, Mikula J, Figiela B, Szechyńska-Hebda M (2022) 3D printing of concrete-geopolymer hybrids. Materials (Basel) 15(8):2819. https://doi.org/10.3390/ma15082819

    Article  Google Scholar 

  55. Marczyk MŁJ, Ziejewska C, Gądek S, Korniejenko K (2021) Hybrid materials based on fly ash, metakaolin, and cement for 3d printing. Materials (Basel) 14(22):1–24. https://doi.org/10.3390/ma14226874

    Article  Google Scholar 

  56. Marczyk MHJ, Ziejewska C, Korniejenko K, Łach M, Marzec W, Góra M, Dziura P, Sprince A, Szechyńska-Hebda M (2022) Properties of 3d printed concrete-geopolymer hybrids reinforced with aramid roving. Materials (Basel) 15(17):6132. https://doi.org/10.3390/ma15176132

    Article  Google Scholar 

  57. Kruger J, Van den Heever M, Cho S, Zeranka S, Van Zijl GP (2019) High-performance 3D printable concrete enhanced with nanomaterials. In: Proceedings of the international conference on sustainable materials, systems and structures (SMSS 2019), vol 533, pp 533–540

  58. Chen Y, Figueiredo SC, Yalcinkaya C, Copuroglu O, Veer F, Schlangen E (2019) The effect of viscosity-modifying admixture on the extrudability of limestone and calcined clay-based. Materials 12(9):1374. https://doi.org/10.3390/ma12091374

    Article  Google Scholar 

  59. Panda MJTB, Paul SC (2017) Anisotropic mechanical performance of 3D printed fiber reinforced sustainable construction material. Mater Lett 209:146–149. https://doi.org/10.1016/j.matlet.2017.07.123

    Article  Google Scholar 

  60. Nematollahi VMB, Vijay P, Sanjayan J, Nazari A, Xia M, Naidu Nerella V (2018) Effect of polypropylene fibre addition on properties of geopolymers made by 3D printing for digital construction. Materials (Basel) 11(12):2352. https://doi.org/10.3390/ma11122352

    Article  Google Scholar 

  61. Panda B, Unluer C, Tan MJ, Composites C, Unluer C, Tan MJ (2018) Investigation of the rheology and strength of geopolymer mixtures for extrusion-based 3D printing. Cem Concr Compos 94:307–314. https://doi.org/10.1016/j.cemconcomp.2018.10.002

    Article  Google Scholar 

  62. Al-Qutaifi S, Nazari A, Bagheri A (2018) Mechanical properties of layered geopolymer structures applicable in concrete 3D-printing. Constr Build Mater 176:690–699. https://doi.org/10.1016/j.conbuildmat.2018.04.195

    Article  Google Scholar 

  63. Ma G, Li Z, Wang L, Bai G (2019) Micro-cable reinforced geopolymer composite for extrusion-based 3D printing. Mater Lett 235:144–147. https://doi.org/10.1016/j.matlet.2018.09.159

    Article  Google Scholar 

  64. Chougan M, Hamidreza Ghaffar S, Jahanzat M, Albar A, Mujaddedi N, Swash R (2020) The influence of nano-additives in strengthening mechanical performance of 3D printed multi-binder geopolymer composites. Constr Build Mater 250:118928. https://doi.org/10.1016/j.conbuildmat.2020.118928

    Article  Google Scholar 

  65. Chen Y, Zhang Y, Xie Y, Zhang Z, Banthia N (2022) Unraveling pore structure alternations in 3D-printed geopolymer concrete and corresponding impacts on macro-properties. Addit Manuf 59:103137. https://doi.org/10.1016/j.addma.2022.103137

    Article  Google Scholar 

  66. Kong X, Dai L, Wang Y, Qiao D, Hou S, Wang S (2022) Influence of kenaf stalk on printability and performance of 3D printed industrial tailings based geopolymer. Constr Build Mater 315:125787. https://doi.org/10.1016/j.conbuildmat.2021.125787

    Article  Google Scholar 

  67. Pasupathy K, Ramakrishnan S, Sanjayan J (2022) 3D concrete printing of eco-friendly geopolymer containing brick waste. Cem Concr Compos 138(May):2023. https://doi.org/10.1016/j.cemconcomp.2023.104943

    Article  Google Scholar 

  68. Muthukrishnan S, Ramakrishnan S, Sanjayan J (2021) Effect of alkali reactions on the rheology of one-part 3D printable geopolymer concrete. Cem Concr Compos 116:103899. https://doi.org/10.1016/j.cemconcomp.2020.103899

    Article  Google Scholar 

  69. Ibrahim KA, van Zijl GP, Babafemi AJ (2023) Comparative studies of LC3- and fly ash-based blended binders in fibre-reinforced printed concrete (FRPC): rheological and quasi-static mechanical characteristics. J Build Eng 80:108016. https://doi.org/10.1016/j.jobe.2023.108016

    Article  Google Scholar 

  70. Scrivener K, Martirena F, Bishnoi S, Maity S (2018) Calcined clay limestone cements (LC3). Cement Concr Res 114:49–56. https://doi.org/10.1016/j.cemconres.2017.08.017

    Article  Google Scholar 

  71. Soni A, Chakraborty S, Das PK, Saha AK (2022) Materials selection of reinforced sustainable composites by recycling waste plastics and agro-waste: An integrated multi-criteria decision making approach. Constr Build Mater 348:128608. https://doi.org/10.1016/j.conbuildmat.2022.128608

    Article  Google Scholar 

  72. Amare M, Swara S, Haish M, Pani AK, Saha P (2023) Performance of agro-wastes and chemical admixtures used in concrete: a review. Mater Today Proc. https://doi.org/10.1016/j.matpr.2023.08.058

    Article  Google Scholar 

  73. Sathiparan N, Anburuvel A (2023) Virgin Vinusha Selvam, Utilization of agro-waste groundnut shell and its derivatives in sustainable construction and building materials—a review. J Build Eng 66:105866. https://doi.org/10.1016/j.jobe.2023.105866.Huixia

    Article  Google Scholar 

  74. Ngayakamo B, Onwualu AP (2022) Recent advances in green processing technologies for valorisation of eggshell waste for sustainable construction materials. Heliyon 8(6):e09649. https://doi.org/10.1016/j.heliyon.2022.e09649

    Article  Google Scholar 

  75. Singh S, Dalbehera MM, Maiti S, Bisht RS, Balam NB, Panigrahi SK (2023) Investigation of agro-forestry and construction demolition wastes in alkali-activated fly ash bricks as sustainable building materials. Waste Manag 159:114–124. https://doi.org/10.1016/j.wasman.2023.01.031

    Article  Google Scholar 

  76. Wu H, Hu R, Yang D, Ma Z (2023) Micro-macro characterizations of mortar containing construction waste fines as replacement of cement and sand: a comparative study. Constr Build Mater. 383:131328. https://doi.org/10.1016/j.conbuildmat.2023.131328

    Article  Google Scholar 

  77. Aslam MS, Huang B, Cui L (2020) Review of construction and demolition waste management in China and USA. J Environ Manag 264:110445. https://doi.org/10.1016/j.jenvman.2020.110445

    Article  Google Scholar 

  78. Zhang C, Mingming Hu, Yang X, Miranda-Xicotencatl B, Sprecher B, Di Maio F, Zhong X, Tukker A (2020) Upgrading construction and demolition waste management from downcycling to recycling in the Netherlands. J Clean Prod 266:121718. https://doi.org/10.1016/j.jclepro.2020.121718

    Article  Google Scholar 

  79. Tu H, Wei Z, Bahrami A, Kahla NB, Ahmad A, Özkılıç YO (2023) Recent advancements and future trends in 3D concrete printing using waste materials. Dev Built Environ 16:100187. https://doi.org/10.1016/j.dibe.2023.100187

    Article  Google Scholar 

  80. Ma G, Yan Y, Zhang M, Sanjayan J (2022) Effect of steel slag on 3D concrete printing of geopolymer with quaternary binders. Ceram Int 48(18):26233–26247. https://doi.org/10.1016/j.ceramint.2022.05.305

    Article  Google Scholar 

  81. Saadati F, Kani EN (2023) Phosphorous slag-based geopolymer cement incorporate with mullite for 3D printing application. Constr Build Mater 406:133444. https://doi.org/10.1016/j.conbuildmat.2023.133444

    Article  Google Scholar 

  82. Madurwar MV, Ralegaonkar RV, Mandavgane SA (2013) Application of agro-waste for sustainable construction materials: a review. Constr Build Mater 38:872–878. https://doi.org/10.1016/j.conbuildmat.2012.09.011

    Article  Google Scholar 

  83. Baharin A, Abdul Fattah N, Abu Bakar A, Ariff ZM (2016) Production of laminated natural fibre board from banana tree wastes. Procedia Chem 19:999–1006. https://doi.org/10.1016/j.proche.2016.03.149

    Article  Google Scholar 

  84. Lamrani M, Laaroussi N, Khabbazi A, Khalfaoui M, Garoum M, Feiz A (2017) Experimental study of thermal properties of a new ecological building material based on peanut shells and plaster. Case Stud Constr Mater 7:294–304. https://doi.org/10.1016/j.cscm.2017.09.006

    Article  Google Scholar 

  85. Ma G, Sun J, Wang Li, Aslani F, Liu M (2018) Electromagnetic and microwave absorbing properties of cementitious composite for 3D printing containing waste copper solids. Cem Concr Compos 94:215–225. https://doi.org/10.1016/j.cemconcomp.2018.09.005

    Article  Google Scholar 

  86. Sun J, Huang Y, Aslani F, Ma G (2020) Electromagnetic wave absorbing performance of 3D printed wave-shape copper solid cementitious element. Cement Concr Compos 114:103789. https://doi.org/10.1016/j.cemconcomp.2020.103789

    Article  Google Scholar 

  87. Carneau P, Mesnil R, Baverel O, Roussel N (2022) Layer pressing in concrete extrusion-based 3D-printing: experiments and analysis. Cem Concr Res 155:106741 (CrossRef)

    Article  Google Scholar 

  88. Panda B, Tan MJ (2018) Experimental study on mix proportion and fresh properties of fly ash based geopolymer for 3D concrete printing. Ceram Int 44(9):10258–10265. https://doi.org/10.1016/j.ceramint.2018.03.031

    Article  Google Scholar 

  89. Panda B, Ruan S, Unluer C, Jen M (2020) Investigation of the properties of alkali-activated slag mixes involving the use of nanoclay and nucleation seeds for 3D printing. Compos Part B Eng 186:107826. https://doi.org/10.1016/j.compositesb.2020.107826

    Article  Google Scholar 

  90. Liu NBC, Wang X, Chen Y, Zhang C, Ma L, Deng Z, Chen C, Zhang Y, Pan J (2021) Influence of hydroxypropyl methylcellulose and silica fume on stability, rheological properties, and printability of 3D printing foam concrete. Cem Concr Compos 122:104158. https://doi.org/10.1016/j.cemconcomp.2021.104158

    Article  Google Scholar 

  91. Liu Z, Li M, Weng Y, Wong TN, Tan MJ (2019) Mixture design approach to optimize the rheological properties of the material used in 3D cementitious material printing. Constr Build Mater 198:245–255. https://doi.org/10.1016/j.conbuildmat.2018.11.252

    Article  Google Scholar 

  92. Zhang Y, Zhang Y, Liu G, Yang Y, Wu M, Pang B (2018) Fresh properties of a novel 3D printing concrete ink. Constr Build Mater 174:263–271. https://doi.org/10.1016/j.conbuildmat.2018.04.115

    Article  Google Scholar 

  93. Ilcan H, Sahin O, Kul A, Ozcelikci E, Sahmaran M (2023) Rheological property and extrudability performance assessment of construction and demolition waste-based geopolymer mortars with varied testing protocols. Cem Concr Compos 136:902. https://doi.org/10.1016/j.cemconcomp.2022.104891

    Article  Google Scholar 

  94. Şahin O, İlcan H, Ateşli AT, Kul A, Yıldırım G, Şahmaran M (2021) Construction and demolition waste-based geopolymers suited for use in 3-dimensional additive manufacturing. Cem Concr Compos 121:104088. https://doi.org/10.1016/j.cemconcomp.2021.104088

    Article  Google Scholar 

  95. Zhou W, McGee W, Zhu H, Gökçe HS, Li VC (2022) Time-dependent fresh properties characterization of 3D printing engineered cementitious composites (3DP-ECC): on the evaluation of buildability. Cem Concr Compos 133:104158. https://doi.org/10.1016/j.cemconcomp.2022.104704

    Article  Google Scholar 

  96. Mechtcherine V, Nerella VN, Kasten K (2014) Testing pumpability of concrete using sliding pipe rheometer. Constr Build Mater 53:312–323. https://doi.org/10.1016/j.conbuildmat.2013.11.037

    Article  Google Scholar 

  97. Nerella VN, Mechtcherine V (2018) Virtual sliding pipe rheometer for estimating pumpability of concrete. Constr Build Mater 170:366–377. https://doi.org/10.1016/j.conbuildmat.2018.03.003

    Article  Google Scholar 

  98. Choi M, Roussel N, Kim Y, Kim J (2013) Lubrication layer properties during concrete pumping. Cem Concr Res 45(1):69–78. https://doi.org/10.1016/j.cemconres.2012.11.001

    Article  Google Scholar 

  99. Nerella VN, Mechtcherine V (2019) Studying the printability of fresh concrete for formwork-free concrete onsite 3D printing technology (CONPrint3D). In: 3D concrete printing in technology construction building applications, pp 333–347. https://doi.org/10.1016/B978-0-12-815481-6.00016-6

  100. Roussel N (2018) Rheological requirements for printable concretes. Cem Concr Res 112(April):76–85. https://doi.org/10.1016/j.cemconres.2018.04.005

    Article  Google Scholar 

  101. Paul SC, van Zijl GPAG, Gibson I (2018) A review of 3D concrete printing systems and materials properties: current status and future research prospects. Rapid Prototyp J 24(4):784–798. https://doi.org/10.1108/RPJ-09-2016-0154

    Article  Google Scholar 

  102. Saruhan V, Keskinateş M, Felekoğlu B (2022) A comprehensive review on fresh state rheological properties of extrusion mortars designed for 3D printing applications. Constr Build Mater 337:127629. https://doi.org/10.1016/j.conbuildmat.2022.127629

    Article  Google Scholar 

  103. Zareiyan B, Khoshnevis B (2018) Effects of mixture ingredients on extrudability of concrete in contour crafting. Rapid Prototyp J 24(4):722–730. https://doi.org/10.1108/RPJ-01-2017-0006

    Article  Google Scholar 

  104. Shakor P, Nejadi S, Sutjipto S, Paul G, Gowripalan N (2019) Effects of deposition velocity in the presence/absence of E6-glass fibre on extrusion-based 3D printed mortar. Addit Manuf 32(December):2020. https://doi.org/10.1016/j.addma.2020.101069

    Article  Google Scholar 

  105. Le TT, Austin SA, Lim S, Buswell RA, Gibb AGF, Thorpe T (2012) Mix design and fresh properties for high-performance printing concrete. Mater Struct Constr 45(8):1221–1232. https://doi.org/10.1617/s11527-012-9828-z

    Article  Google Scholar 

  106. Nerella VN, Näther M, Iqbal A, Butler M, Mechtcherine V (2019) Inline quantification of extrudability of cementitious materials for digital construction. Cem Concr Compos 95:260–270. https://doi.org/10.1016/j.cemconcomp.2018.09.015

    Article  Google Scholar 

  107. Valente M, Sibai A, Sambucci M (2019) Extrusion-based additive manufacturing of concrete products: revolutionizing and remodeling the construction industry. J Compos Sci 3(3):88. https://doi.org/10.3390/jcs3030088

    Article  Google Scholar 

  108. Cao X, Yu S, Cui H, Li Z (2022) 3D printing devices and reinforcing techniques for extruded cement-based materials: a review. Buildings 12(4):1–19. https://doi.org/10.3390/buildings12040453

    Article  Google Scholar 

  109. Borisova KE, Ivanova TN, Latypov RG (2017) Study of screw pump stator and rotor working capacity to increase the output. Procedia Eng 206:688–691. https://doi.org/10.1016/j.proeng.2017.10.538

    Article  Google Scholar 

  110. Bong SH, Nematollahi B, Nazari A, Xia M, Sanjayan J (2019) Method of optimisation for ambient temperature cured sustainable geopolymers for 3D printing construction applications. Materials (Basel) 12(6):902. https://doi.org/10.3390/ma12060902

    Article  Google Scholar 

  111. Bong SH, Nematollahi B, Nazari A, Xia M, Sanjayan JG (2019) Fresh and hardened properties of 3D printable geopolymer cured in ambient temperature. RILEM Bookseries 19:3–11. https://doi.org/10.1007/978-3-319-99519-9_1

    Article  Google Scholar 

  112. Guo X, Yang J, Xiong G (2020) Influence of supplementary cementitious materials on rheological properties of 3D printed fly ash based geopolymer. Cem Concr Compos 114:103820. https://doi.org/10.1016/j.cemconcomp.2020.103820

    Article  Google Scholar 

  113. Panda B, Singh GB, Unluer C, Tan MJ (2019) Synthesis and characterization of one-part geopolymers for extrusion based 3D concrete printing. J Clean Prod 220:610–619. https://doi.org/10.1016/j.jclepro.2019.02.185

    Article  Google Scholar 

  114. Zhang DW, Min Wang D, Lin XQ, Zhang T (2018) The study of the structure rebuilding and yield stress of 3D printing geopolymer pastes. Constr Build Mater 184:575–580. https://doi.org/10.1016/j.conbuildmat.2018.06.233

    Article  Google Scholar 

  115. Shakor P, Nejadi S, Paul G, Malek S (2019) Review of emerging additive manufacturing technologies in 3D printing of cementitious materials in the construction industry. Front Built Environ 4:85. https://doi.org/10.3389/fbuil.2018.00085

    Article  Google Scholar 

  116. Hambach M, Volkmer D (2017) Properties of 3D-printed fiber-reinforced Portland cement paste. Cem Concr Compos 79:62–70. https://doi.org/10.1016/j.cemconcomp.2017.02.001

    Article  Google Scholar 

  117. Chen ESY, Figueiredo SC, Li Z, Chang Z, Jansen K, Çopuroğlu O (2020) Improving printability of limestone-calcined clay-based cementitious materials by using viscosity-modifying admixture. Cem Concr Res 132:106040. https://doi.org/10.1016/j.cemconres.2020.106040

    Article  Google Scholar 

  118. Sun C, Xiang J, Xu M, He Y, Tong Z, Cui X (2020) 3D extrusion free forming of geopolymer composites: materials modification and processing optimization. J Clean Prod 258:120986. https://doi.org/10.1016/j.jclepro.2020.120986

    Article  Google Scholar 

  119. Wang Y, Jiang Y, Pan T, Yin K (2021) The synergistic effect of ester-ether copolymerization thixo-tropic superplasticizer and nano-clay on the buildability of 3D printable cementitious materials. Materials (Basel) 14(16):4622. https://doi.org/10.3390/ma14164622

    Article  Google Scholar 

  120. Cheng MHY, Cong P, Hao H, Zhao Q, Mei L, Zhang A, Han Z (2022) Improving workability and mechanical properties of one-part waste brick power based-binders with superplasticizers. Constr Build Mater 335:127535. https://doi.org/10.1016/j.conbuildmat.2022.127535

    Article  Google Scholar 

  121. Marchon D, Kawashima S, Bessaies-Bey H, Mantellato S, Ng S (2018) Hydration and rheology control of concrete for digital fabrication: potential admixtures and cement chemistry. Cem Concr Res 112:96–110. https://doi.org/10.1016/j.cemconres.2018.05.014

    Article  Google Scholar 

  122. Zhang H, Zhu L, Zhang F, Yang M (2021) Effect of fiber content and alignment on the mechanical properties of 3d printing cementitious composites. Materials (Basel) 14(9):1–16. https://doi.org/10.3390/ma14092223

    Article  Google Scholar 

  123. Lazorenko G, Kasprzhitskii A (2022) Geopolymer additive manufacturing: a review. Addit Manuf 55:102782. https://doi.org/10.1016/j.addma.2022.102782

    Article  Google Scholar 

  124. El Cheikh K, Rémond S, Khalil N, Aouad G (2017) Numerical and experimental studies of aggregate blocking in mortar extrusion. Constr Build Mater 145:452–463. https://doi.org/10.1016/j.conbuildmat.2017.04.032

    Article  Google Scholar 

  125. Tay YWD, Li MY, Tan MJ (2019) Effect of printing parameters in 3D concrete printing: printing region and support structures. J Mater Process Technol 271:261–270. https://doi.org/10.1016/j.jmatprotec.2019.04.007

    Article  Google Scholar 

  126. Paul SC, Tay YWD, Panda B et al (2018) Fresh and hardened properties of 3D printable cementitious materials for building and construction. Archiv Civ Mech Eng 18:311–319. https://doi.org/10.1016/j.acme.2017.02.008

    Article  Google Scholar 

  127. Özalp F, Yilmaz HD (2020) Fresh and hardened properties of 3D high—strength printing concrete and its recent applications. Iran J Sci Technol Trans Civ Eng 44:319–330. https://doi.org/10.1007/s40996-020-00370-4

    Article  Google Scholar 

  128. Chen Y, He S, Zhang Y, Wan Z, Çopuroğlu O, Schlangen E (2021) 3D printing of calcined clay-limestone-based cementitious materials. Cem Concr Res 149:106553. https://doi.org/10.1016/j.cemconres.2021.106553

    Article  Google Scholar 

  129. Liu MTZ, Li M, Moo GSJ, Kobayashi H, Wong TN (2023) Effect of nanostructured silica additives on the extrusion-based 3D concrete printing application. J Compos Sci 7(5):191. https://doi.org/10.3390/jcs7050191

    Article  Google Scholar 

  130. Bong SH, Nematollahi B, Xia M, Ghaffar SH, Pan J, Dai JG (2022) Properties of additively manufactured geopolymer incorporating mineral wollastonite microfibers. Constr Build Mater 331:127282. https://doi.org/10.1016/j.conbuildmat.2022.127282

    Article  Google Scholar 

  131. Nematollahi B, Xia M, Sanjayan J, Vijay P (2018) Effect of type of fiber on inter-layer bond and flexural strengths of extrusion-based 3D printed geopolymer. Mater Sci Forum 939:155–162. https://doi.org/10.4028/www.scientific.net/MSF.939.155

    Article  Google Scholar 

  132. Paul SC, Tay YWD, Panda B, Tan MJ (2018) Fresh and hardened properties of 3D printable cementitious materials for building and construction. Arch Civ Mech Eng 18(1):311–319. https://doi.org/10.1016/j.acme.2017.02.008

    Article  Google Scholar 

  133. Chandra Paul S, Basit MA, Hasan NMS, Dey D, Panda B (2023) 3D printing of geopolymer mortar: overview of the effect of mix design and printing parameters on the strength. Mater Today Proc. https://doi.org/10.1016/j.matpr.2023.04.292

    Article  Google Scholar 

  134. Le TT, Austin SA, Lim S, Buswell RA, Law R, Gibb AG (2012) Hardened properties of high-performance printing concrete. Cem Concr Res 42(3):558–566. https://doi.org/10.1016/j.cemconres.2011.12.003

    Article  Google Scholar 

  135. Peng Y, Unluer C (2022) Development of alternative cementitious binders for 3D printing applications: a critical review of progress, advantages and challenges. Compos Part B Eng 252(May):2023. https://doi.org/10.1016/j.compositesb.2022.110492

    Article  Google Scholar 

  136. Panda B, Paul SC, Mohamed NAN, Tay YWD, Tan MJ (2018) “Measurement of tensile bond strength of 3D printed geopolymer mortar. Meas J Int Meas Confed 113:108–116. https://doi.org/10.1016/j.measurement.2017.08.051

    Article  Google Scholar 

  137. Tay MTYW, Ting GH, Qian Y, Panda B, He L (2018) Time gap effect on bond strength of 3D-printed concrete. Virtual Phys Prototyp 14(1):104–113. https://doi.org/10.1080/17452759.2018.1500420

    Article  Google Scholar 

  138. Van Der Putten J, De Schutter G, Van Tittelboom K (2019) The effect of print parameters on the (micro)structure of 3D printed cementitious materials. RILEM Bookseries 19:234–244. https://doi.org/10.1007/978-3-319-99519-9_22

    Article  Google Scholar 

  139. Bos F, Wolfs R, Ahmed Z, Salet T (2016) Additive manufacturing of concrete in construction: potentials and challenges of 3D concrete printing. Virtual Phys Prototyp 11(3):209–225. https://doi.org/10.1080/17452759.2016.1209867

    Article  Google Scholar 

  140. Cui H, Li Y, Cao X, Huang M, Tang W, Li Z (2022) Experimental study of 3D concrete printing configurations based on the buildability evaluation. Appl Sci 12(6):2939. https://doi.org/10.3390/app12062939

    Article  Google Scholar 

  141. Marchment T, Sanjayan J, Xia M (2019) Method of enhancing interlayer bond strength in construction scale 3D printing with mortar by effective bond area amplification. Mater Des 169:107684. https://doi.org/10.1016/j.matdes.2019.107684

    Article  Google Scholar 

  142. Tao Y, Zhang Yi, De Schutter G, Van Tittelboom K (2024) Interfacial bonding of 3D printable concrete with chemically reactive coating for automatic repair. Dev Built Environ 17:100333. https://doi.org/10.1016/j.dibe.2024.100333

    Article  Google Scholar 

  143. Hager I, Maroszek M, Mróz K et al (2022) Interlayer bond strength testing in 3D-printed mineral materials for construction applications. Materials 15:4112. https://doi.org/10.3390/ma15124112

    Article  Google Scholar 

  144. Babafemi AJ, Kolawole JT, Miah MJ et al (2021) A concise review on interlayer bond strength in 3D concrete printing. Sustainability 13:7137. https://doi.org/10.3390/su13137137

    Article  Google Scholar 

  145. Van Der Putten J, Deprez M, Cnudde V, De Schutter G, Van Tittelboom K (2019) Microstructural characterization of 3D printed cementitious materials. Materials 12(18):2993. https://doi.org/10.3390/ma12182993

    Article  Google Scholar 

  146. Ma G, Salman NM, Wang L, Wang F (2020) A novel additive mortar leveraging internal curing for enhancing interlayer bonding of cementitious composite for 3D printing. Constr Build Mater 244:118305. https://doi.org/10.1016/j.conbuildmat.2020.118305

    Article  Google Scholar 

  147. Panda B, Lim JH, Tan MJ (2019) Mechanical properties and deformation behaviour of early age concrete in the context of digital construction. Compos Part B Eng 165:563–571. https://doi.org/10.1016/j.compositesb.2019.02.040

    Article  Google Scholar 

  148. Weng Y, Li M, Zhang D, Tan MJ, Qian S (2021) Investigation of interlayer adhesion of 3D printable cementitious material from the aspect of printing process. Cem Concr Res 1(143):106386. https://doi.org/10.1016/j.cemconres.2021.106386

    Article  Google Scholar 

  149. Kazemian A, Yuan X, Cochran E, Khoshnevis B (2017) Cementitious materials for construction-scale 3D printing: laboratory testing of fresh printing mixture. Constr Build Mater 145:639–647. https://doi.org/10.1016/j.conbuildmat.2017.04.015

    Article  Google Scholar 

  150. Qaidi S, Yahia A, Tayeh BA, Unis H, Faraj R, Mohammed A (2022) 3D printed geopolymer composites: a review. Mater Today Sustain 20:100240. https://doi.org/10.1016/j.mtsust.2022.100240

    Article  Google Scholar 

  151. Reales OAM, Duda P, Silva EC et al (2019) Nanosilica particles as structural buildup agents for 3D printing with Portland cement pastes. Constr Build Mater 219:91–100. https://doi.org/10.1016/j.conbuildmat.2019.05.174

    Article  Google Scholar 

  152. Albar A, Chougan M, Al-Kheetan MJ et al (2020) Effective extrusion-based 3D printing system design for cementitious-based materials. Results Eng 6:100135. https://doi.org/10.1016/j.rineng.2020.100135

    Article  Google Scholar 

  153. Seyedreza Zaribaf S (2022) Analysis of interlayer bond in 3D printed concrete, Master's Thesis Dissertation, Escuela de Caminos, UPC BarcelonaTech

  154. Zareiyan B, Khoshnevis B (2017) Effects of interlocking on interlayer adhesion and strength of structures in 3D printing of concrete. Autom Constr 83:212–221. https://doi.org/10.1016/j.autcon.2017.08.019

    Article  Google Scholar 

  155. Van Der Putten J, De Schutter G, Van Tittelboom K (2018) The effect of print parameters on the (micro)structure of 3D printed cementitious materials. In: Wangler T, Flatt R (eds) First RILEM international conference on concrete and digital fabrication—digital concrete 2018. DC 2018. RILEM bookseries, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-99519-9_22

  156. Souza MT, Ferreira IM, de Moraes EG, Senff L, de Oliveira APN (2020) 3D printed concrete for large-scale buildings: an overview of rheology, printing parameters, chemical admixtures, reinforcements, and economic and environmental prospects. J Build Eng 32:101833 (CrossRef)

    Article  Google Scholar 

  157. Suiker ASJ (2018) Mechanical performance of wall structures in 3D printing processes: theory, design tools and experiments. Int J Mech Sci 137:145–170 (CrossRef)

    Article  Google Scholar 

  158. Suiker ASJ (2022) Effect of accelerated curing and layer deformations on structural failure during extrusion-based 3D printing. Cem Concr Res 151:106586 (CrossRef)

    Article  Google Scholar 

  159. Xu J, Ding L, Cai L, Zhang L, Luo H, Qin W (2019) Volume-forming 3D concrete printing using a variable-size square nozzle. Autom Constr 104:95–106 (CrossRef)

    Article  Google Scholar 

  160. He L, Li H, Chow WT, Zeng B, Qian Y (2022) Increasing the interlayer strength of 3D printed concrete with tooth-like interface: an experimental and theoretical investigation. Mater Des 223:111117 (CrossRef)

    Article  Google Scholar 

  161. Zhou W, Zhang Y, Ma L, Li VC (2022) Influence of printing parameters on 3D printing engineered cementitious composites (3DP-ECC). Cement Concr Compos 130:104562. https://doi.org/10.1016/j.cemconcomp.2022.104562

    Article  Google Scholar 

  162. Özalp F, Yilmaz HD (2020) Fresh and hardened properties of 3D high-strength printing concrete and its recent applications. Iran J Sci Technol Trans Civ Eng 44(Suppl 1):319–330. https://doi.org/10.1007/s40996-020-00370-4

    Article  Google Scholar 

  163. Lao W, Li M, Masia L, Tan MJ (2020) Approaching rectangular extrudate in 3D printing for building and construction by experimental iteration of nozzle design. Solid Freeform Fabrication. Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium - an Additive Manufacturing Conference, SFF 2017 2612-2623

  164. Torta S, Torta J (2019) 3D printing: an introduction. In: Mercury learning and infirmation, David Pallai Publisher, Virginia Boston

  165. Hussam A, Sooraj AON, Neithalath N (2019) Insights into material design, extrusion rheology, and properties of 3D-printable alkali-activated fly ash-based binders. Mater Des 167:107634. https://doi.org/10.1016/j.matdes.2019.107634

    Article  Google Scholar 

  166. Nair SAO, Alghamdi H, Arora A et al (2019) Linking fresh paste microstructure, rheology and extrusion characteristics of cementitious binders for 3D printing. J Am Ceram Soc 102:3951–4396. https://doi.org/10.1111/jace.16305

    Article  Google Scholar 

  167. Aboulayt A, Jaafri R, Samouh H, Idrissi ACE, Roziere E, Moussa R, Loukili A (2018) Stability of a new geopolymer grout: rheological and mechanical performances of metakaolin-fly ash binary mixtures. Constr Build Mater 181:420–436. https://doi.org/10.1016/j.conbuildmat.2018.06.025

    Article  Google Scholar 

  168. Chen M, Li L, Wang J et al (2020) Rheological parameters and building time of 3D printing sulphoaluminate cement paste modified by retarder and diatomite. Constr Build Mater 234:117391. https://doi.org/10.1016/j.conbuildmat.2019.117391

    Article  Google Scholar 

  169. Jayathilakage R, Rajeev P, Sanjayan J (2021) Extrusion rheometer for 3D concrete printing. Cement Concr Compos 121:104075. https://doi.org/10.1016/j.cemconcomp.2021.104075

    Article  Google Scholar 

  170. Wu-Jian L, Khayat KH, Yahia A, Xing F (2017) Rheological approach in proportioning and evaluating prestressed self-consolidating concrete. Cement Concr Compos 82:105–116. https://doi.org/10.1016/j.cemconcomp.2017.05.008

    Article  Google Scholar 

  171. Perrot A, Rangeard D, Courteille E (2018) 3D printing of earth-based materials: processing aspects. Constr Build Mater 172:670–676. https://doi.org/10.1016/j.conbuildmat.2018.04.017

    Article  Google Scholar 

  172. Kruger J, Zeranka S, van Zijl G (2020) A rheology-based quasi-static shape retention model for digitally fabricated concrete. Constr Build Mater 254:119241. https://doi.org/10.1016/j.conbuildmat.2020.119241

    Article  Google Scholar 

  173. Ouyang J, Tan Y, Corr DJ, Shah SP (2016) The thixotropic behavior of fresh cement asphalt emulsion paste. Constr Build Mater 114:906–912. https://doi.org/10.1016/j.conbuildmat.2016.04.024

    Article  Google Scholar 

  174. Wei Y (2019) Investigating and modeling the rheology and flow instabilities of thixotropic yield stress fluids. Ph.D. dissertation. University of Michigan

  175. Chen XCM, Guo X, Zheng Y, Li L, Yan Z, Zhao P, Lu L (2018) Effect of tartaric acid on the printable, rheological and mechanical properties of 3D printing sulphoaluminate cement paste. Materials (Basel) 11(12):2417. https://doi.org/10.3390/ma11122417

    Article  Google Scholar 

  176. Tran MV, Cu YTH, Le CVH (2021) Rheology and shrinkage of concrete using polypropylene fiber for 3D concrete printing. J Build Eng 44:103400. https://doi.org/10.1016/j.jobe.2021.103400

    Article  Google Scholar 

  177. Namugenyia C, Nimmagaddab SL, Reinersc T (2019) Design of a SWOT analysis model and its evaluation in diverse digital business ecosystem contexts. Procedia Comput Sci 159:1145–1154

    Article  Google Scholar 

  178. Liliana L (2016) A new model of Ishikawa diagram for quality assessment. IOP Conf Ser Mater Sci Eng. https://doi.org/10.1088/1757-899X/161/1/012099

    Article  Google Scholar 

  179. Kabir S (2017) An overview of fault tree analysis and its application in model based dependability analysis. Expert Syst Appl 77:114–135. https://doi.org/10.1016/j.eswa.2017.01.058

    Article  Google Scholar 

  180. Jo JH, Jo BW, Cho W, Kim JH (2020) Development of a 3D printer for concrete structures: laboratory testing of cementitious materials. Int J Constr Struct Mater. https://doi.org/10.1186/s40069-019-0388-2

    Article  Google Scholar 

  181. Rashad AM (2014) A comprehensive overview about the influence of different admixtures and additives on the properties of alkali-activated fly ash. Mater Des 53:1005–1025. https://doi.org/10.1016/j.matdes.2013.07.074

    Article  Google Scholar 

  182. Roussel N, Ovarlez G, Garrault S, Brumaud C (2012) The origins of thixotropy of fresh cement pastes. Cem Concr Res 42(1):148–157. https://doi.org/10.1016/j.cemconres.2011.09.004

    Article  Google Scholar 

  183. El Jai M, Herrou B, Benazza H (2013) Integration of a risk analysis method with Holonic approach in an Isoarchic context. Int J Eng Technol 5(6):5196–5206. https://www.enggjournals.com/ijet/docs/IJET13-05-06-282.pdf

  184. Jai M, Akhrif I, Herrou B, Benazza H (2014) Correction of the production master plan according to preventive maintenance constraints and equipments degradation state. Engineering 6:274–291. https://doi.org/10.4236/eng.2014.66032

    Article  Google Scholar 

  185. El Jai M, Akhrif I, Abidine T et al (2015) Intelligent process optimization into Holonic Manufacturing Systems using TAGUCHI approach and UML Modeling Language. Int J Sci Eng Res 6(5):1099–1107

    Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iatimad Akhrif.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Tables 7, 8 and 9.

Table 7 Formulations of 3D printing mixtures based on cementitious materials
Table 8 Formulations of 3D printing mixtures based on hybrid materials
Table 9 Formulations of 3D printing mixtures based on geopolymer materials

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oulkhir, F., Akhrif, I. & El Jai, M. 3D concrete printing success: an exhaustive diagnosis and failure modes analysis. Prog Addit Manuf (2024). https://doi.org/10.1007/s40964-024-00638-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40964-024-00638-5

Keywords

Navigation