Skip to main content

Advertisement

Log in

Review of additive manufacturing with 2D MXene: techniques, applications, and future perspectives

  • Review Article
  • Published:
Progress in Additive Manufacturing Aims and scope Submit manuscript

Abstract

As a new generation of 2D nano-material family, transition metal carbonitride, also referred to as MXene, exhibits wide variety of outstanding properties including electrochemical, optical, and biocompatibility. These allow MXene to be used for applications such as energy storage, wireless communication, optoelectronics, and tissue scaffolds. The negative surface zeta potential and hydrophilicity of MXene make it easily dispersible in many aqueous mediums, and the colloidal solution can be tuned over a large viscosity range due to MXene’s clay-like behavior. These unique properties enabled MXene as a versatile material for additive manufacturing (AM) techniques to pattern MXene from raw material to devices. The freedom of AM has enabled tools and performances for applications that is otherwise not possible via traditional bottom-up fabrication technique. Ever since the first printing of MXene in 2018, innovative printing techniques and applications are being demonstrated each year. The objective of this review article is to summarize the key breakthrough in these fields, and to provide an overview of the state-of-the-art progress in terms of material development, AM techniques, and respective applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Reproduced with permission from: Ref. [8] Copyright 1999–2021 John Wiley & Sons, Inc

Fig. 6

Reproduced with permission from Ref. [183]. Copyright 2018 American Chemical Society

Fig. 7

Reproduced with permission from Ref. [186]. Copyright 2013 Wiley–Vch Verlag GmbH. b Optical image of DIW printable MXene ink showing the highly viscous nature. Reprinted with permission from Ref. [182]. Copyright 1999–2021 John Wiley & Sons, Inc. c Interplay of rheological properties in DIW. Initial screening: continuous fiber formation is desired to form stable layer. Rheological evaluation: (a) yield stress allows for smooth flow initiation, (b) shear thinning promotes smooth extrusion, (c) recovery of ink after printing to hold its structure and sustain restacking of layers. Reproduced with permission from Ref. [187]. Copyright N. Paxton 2017. d Top: illustrating the yield point as the limit of the linear viscoelastic range, and the flow point. Bottom: Elastic recovery test representing idealized ink behavior, where G' (blue) and G" (red) are measured under low deformation (white time interval) and high deformation (gray time interval). Reprinted with permission from Ref. [186]. Copyright 2020 American Chemical Society. e Ink can also be extruded into liquid medium for additional support or shape formation. Reprinted with permission from Ref. [188]. Copyright 2021 Elsevier B.V

Fig. 8

Copyright 1999–2021 John Wiley & Sons, Inc. c Nitrogen functionalized MXene ink at 15 mgmL−1 with CNT, GO and AC as viscosity modifier. The doped nitrogen alleviated the problem of MXene flake restacking. Reprinted with permission from Ref. [197]. Copyright 1999–2022 John Wiley & Sons, Inc. d SAP beads can be added to MXene dispersion to form uniformly concentrated MXene ink at ultra-high concentration of 290 mgmL−1, enabling room temperature printing of 3D MXene structure. Reprinted with permission from Ref. [189]. Copyright 2019 American Chemical Society. e Left: Schematics of MXene/CNF hybrid dispersion ink. Right: CNF improved mechanical properties of MXene, allowing the composite film to be folded into a paper airplane. Reprinted with permission from Ref. [198]. Copyright 1999–2021 John Wiley & Sons, Inc. f Illustration of MXene as rheology modifier to improve viscosity of PEDOT:PSS gel through hydrogen bonding between OH termination group and PSS backchain. Reprinted with permission from Ref. [199]. Copyright 1999–2022 John Wiley & Sons, Inc

Fig. 9
Fig. 10

Reproduced with permission from Ref. [208]. Copyright 2021 Elsevier B.V. b Formation, spreading and drying of inkjet drop of colloidal suspensions. Reproduced with permission from Ref. [209]. Copyright 2014 Elsevier B.V. c Illustration of CJ formation by a continuously spinning peristaltic pump. d Optical image of a CJ of water column. Reproduced with permission from Ref. [208]. Copyright 2021 Elsevier B.V

Fig. 11

Reproduced with permission from Ref. [217]. Copyright 1999–2021 John Wiley & Sons, Inc. c Viscosity of MXene ink with various aqueous medium. d NMP printed line and e Ethanol printed line displaying high accuracy. The distance between arrows in d) and e) are 50 and 130 μm respectively. f Effect of increasing print path from 1 to 5. g and h Effect of capacitance and sheet resistance change from increasing print path. i Stability of binder free MXene ink in various medium. Reproduced with permission from Ref. [190]. j Schematic of the 3D freeze printing process for fabrication of 3D MXene aerogels. Reproduced with permission from Ref. [206]. Copyright 1999–2022 John Wiley & Sons, Inc

Fig. 12

Reproduced with permission from Ref. [1]. Copyright 2021 Elsevier B.V. c Schematic of the connection between printed MXene ECG electrode and acquisition system. Reproduced with permission from Ref. [219]. Copyright 2021 IOP Publishing. d Schematic of droplet wetting on textile. Reproduced with permission from Ref. [220]. Copyright 1999–2022 John Wiley & Sons, Inc. All rights reserved. e 3D freeze printed MXene aerogels infiltrated in PDMS elastomer and f Corresponding resistance change by applying 10% tension. Reproduced with permission from Ref. [206]. Copyright 1999–2022 John Wiley & Sons, Inc

Fig. 13

Copyright 2021 IOP Publishing

Fig. 14

Reproduced with permission from Ref. [227]. Copyright 2020 Acta Materialia Inc. Published by Elsevier Ltd

Fig. 15

Reproduced with permission from Ref. [185]. Copyright 2021 American Chemical Society

Fig. 16

Reproduced from Ref [2]. with permission from the Royal Society of Chemistry. c Illustration of 3D screen printing procedure. Subsequent layers can be deposited on top of each other to form a 3D structure. d 3D screen printed tablets with varying structures. Reprinted with permission from Ref. [228]. 2020 Elsevier B.V

Fig. 17

Reproduced from Ref [2]. with permission from the Royal Society of Chemistry. c Highly viscous MXene sediment ink immediately and after 30 min sitting on an inclined glass substrate. Reproduced with permission from Ref. [229]. Copyright 1999–2021 John Wiley & Sons, Inc. d Measured live heartbeat with screen printed MXene sensor. Reprinted with permission from Ref. [230]. Copyright 2021 Elsevier B.V. e Illustration of the orderly aligned MXene flakes after shear interaction. Reprinted with permission from Ref. [176]. Copyright 1999–2021 John Wiley & Sons, Inc

Fig. 18

Copyright 2013 American Chemical Society. d Illustration of the change in the meniscus of the fluid due to an increase in voltage potential between the nozzle tip and the substrate. Reprinted with permission from Ref. [234]. Copyright 2010 Elsevier Ltd

Fig. 19

Reproduced with permission from Ref. [24]. Copyright 1999–2021 John Wiley & Sons, Inc

Similar content being viewed by others

Availability of data and material

Not applicable.

References

  1. Wu CW, Unnikrishnan B, Chen IWP, Harroun SG, Chang HT, Huang CC (2020) Excellent oxidation resistive MXene aqueous ink for micro-supercapacitor application. Energy Storage Mater 25(2019):563–571. https://doi.org/10.1016/j.ensm.2019.09.026

    Article  Google Scholar 

  2. Li T, Chen T, Shen X, Shi HH, Naguib HE (2022) A binder jet 3D printed MXene composite for strain sensing and energy storage application. Nanoscale Adv 4:916–925. https://doi.org/10.1039/d1na00698c

    Article  Google Scholar 

  3. Wang X, Jiang M, Zhou Z, Gou J, Hui D (2017) 3D printing of polymer matrix composites: A review and prospective. Compos B Eng 110:442–458. https://doi.org/10.1016/j.compositesb.2016.11.034

    Article  Google Scholar 

  4. Culmone C, Smit G, Breedveld P (2019) Additive manufacturing of medical instruments: A state-of-the-art review. Addit Manuf 27:461–473. https://doi.org/10.1016/j.addma.2019.03.015

    Article  Google Scholar 

  5. Hu G et al (2018) Functional inks and printing of two-dimensional materials. Chem Soc Rev 47(9):3265–3300. https://doi.org/10.1039/c8cs00084k

    Article  Google Scholar 

  6. Wang Y, Xu Y, Hu M, Ling H, Zhu X (2020) MXenes: Focus on optical and electronic properties and corresponding applications. Nanophotonics 9(7):1601–1620. https://doi.org/10.1515/nanoph-2019-0556

    Article  Google Scholar 

  7. Naguib M et al (2012) Two-dimensional transition metal carbides. ACS Nano 6(2):1322–1331. https://doi.org/10.1021/nn204153h

    Article  Google Scholar 

  8. Naguib M et al (2011) Two-dimensional nanocrystals produced by exfoliation of Ti 3AlC 2. Adv Mater 23(37):4248–4253. https://doi.org/10.1002/adma.201102306

    Article  Google Scholar 

  9. Hart JL et al (2019) Control of MXenes’ electronic properties through termination and intercalation. Nat Commun 10(1):522. https://doi.org/10.1038/s41467-018-08169-8

    Article  Google Scholar 

  10. Ghidiu M, Lukatskaya MR, Zhao M-Q, Gogotsi Y, Barsoum MW (2014) Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516(7529):78–81. https://doi.org/10.1038/nature13970

    Article  Google Scholar 

  11. Lukatskaya MR et al (2013) Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 1979(341):1502–1505

    Article  Google Scholar 

  12. Wen D et al (2021) Inkjet Printing Transparent and Conductive MXene (Ti 3 C 2 T x ) Films: A Strategy for Flexible Energy Storage Devices. ACS Appl Mater Interfaces. https://doi.org/10.1021/acsami.1c00724

    Article  Google Scholar 

  13. Hantanasirisakul K et al (2016) Fabrication of Ti3C2Tx MXene Transparent Thin Films with Tunable Optoelectronic Properties. Adv Electron Mater 2(6):1–7. https://doi.org/10.1002/aelm.201600050

    Article  Google Scholar 

  14. Jin X et al (2020) Flame-retardant poly(vinyl alcohol)/MXene multilayered films with outstanding electromagnetic interference shielding and thermal conductive performances. Chem Eng J 380(2019):122475. https://doi.org/10.1016/j.cej.2019.122475

    Article  Google Scholar 

  15. He L et al (2019) Large-scale production of simultaneously exfoliated and Functionalized Mxenes as promising flame retardant for polyurethane. Compos B Eng 179:107486. https://doi.org/10.1016/j.compositesb.2019.107486

    Article  Google Scholar 

  16. Huang H et al (2020) Synergistic effect of MXene on the flame retardancy and thermal degradation of intumescent flame retardant biodegradable poly (lactic acid) composites. Chin J Chem Eng 28(7):1981–1993. https://doi.org/10.1016/j.cjche.2020.04.014

    Article  Google Scholar 

  17. Shahzad F et al (2016) Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353(6304):1137–1140. https://doi.org/10.1126/science.aag2421

    Article  Google Scholar 

  18. Choi G et al (2018) Enhanced Terahertz Shielding of MXenes with Nano-Metamaterials. Adv Opt Mater 6(5):1–6. https://doi.org/10.1002/adom.201701076

    Article  Google Scholar 

  19. Akuzum B et al (2018) Rheological Characteristics of 2D Titanium Carbide (MXene) Dispersions: A Guide for Processing MXenes. ACS Nano 12(3):2685–2694. https://doi.org/10.1021/acsnano.7b08889

    Article  Google Scholar 

  20. Maleski K, Mochalin VN, Gogotsi Y (2017) Dispersions of Two-Dimensional Titanium Carbide MXene in Organic Solvents. Chem Mater 29(4):1632–1640. https://doi.org/10.1021/acs.chemmater.6b04830

    Article  Google Scholar 

  21. Jiang C et al (2019) All-electrospun flexible triboelectric nanogenerator based on metallic MXene nanosheets. Nano Energy 59(February):268–276. https://doi.org/10.1016/j.nanoen.2019.02.052

    Article  Google Scholar 

  22. Sarycheva A, Polemi A, Liu Y, Dandekar K, Anasori B, Gogotsi Y (2018) 2D titanium carbide (MXene) for wireless communication. Sci Adv 4(9):1–9. https://doi.org/10.1126/sciadv.aau0920

    Article  Google Scholar 

  23. Halim J et al (2014) Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chem Mater 26(7):2374–2381. https://doi.org/10.1021/cm500641a

    Article  Google Scholar 

  24. Tang X et al (2021) Engineering Aggregation-Resistant MXene Nanosheets As Highly Conductive and Stable Inks for All-Printed Electronics. Adv Funct Mater 2010897:2010897. https://doi.org/10.1002/adfm.202010897

    Article  Google Scholar 

  25. Tang Q, Zhou Z, Shen P (2012) Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti 3C 2 and Ti 3C 2X 2 (X = F, OH) monolayer. J Am Chem Soc 134(40):16909–16916. https://doi.org/10.1021/ja308463r

    Article  Google Scholar 

  26. Naguib M et al (2012) MXene: a promising transition metal carbide anode for lithium-ion batteries. Electrochem commun 16(1):61–64. https://doi.org/10.1016/j.elecom.2012.01.002

    Article  Google Scholar 

  27. Ren CE et al (2016) Porous Two-Dimensional Transition Metal Carbide (MXene) Flakes for High-Performance Li-Ion Storage. ChemElectroChem 3(5):689–693. https://doi.org/10.1002/celc.201600059

    Article  Google Scholar 

  28. Naguib M et al (2014) One-step synthesis of nanocrystalline transition metal oxides on thin sheets of disordered graphitic carbon by oxidation of MXenes. Chem Commun 50(56):7420–7423. https://doi.org/10.1039/c4cc01646g

    Article  Google Scholar 

  29. Ahmed B, Anjum DH, Gogotsi Y, Alshareef HN (2017) Atomic layer deposition of SnO2 on MXene for Li-ion battery anodes. Nano Energy 34:249–256. https://doi.org/10.1016/j.nanoen.2017.02.043

    Article  Google Scholar 

  30. Er D, Li J, Naguib M, Gogotsi Y, Shenoy VB (2014) Ti3C2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries. ACS Appl Mater Interfaces 6(14):11173–11179. https://doi.org/10.1021/am501144q

    Article  Google Scholar 

  31. Bao W, Liu L, Wang C, Choi S, Wang D, Wang G (2018) Facile Synthesis of Crumpled Nitrogen-Doped MXene Nanosheets as a New Sulfur Host for Lithium-Sulfur Batteries. Adv Energy Mater. https://doi.org/10.1002/aenm.201702485

    Article  Google Scholar 

  32. Xiao Z, Li Z, Meng X, Wang R (2019) MXene-engineered lithium–sulfur batteries. J Mater Chem A 7(40):22730–22743. https://doi.org/10.1039/C9TA08600E

    Article  Google Scholar 

  33. Zhao Q, Zhu Q, Liu Y, Xu B (2021) Status and Prospects of MXene-Based Lithium-Sulfur Batteries. Adv Functional Mater. https://doi.org/10.1002/adfm.202100457

    Article  Google Scholar 

  34. Zhang Y et al (2021) MXene and MXene-based materials for lithium-sulfur batteries. Progress Nat Sci 31(4):501–513. https://doi.org/10.1016/j.pnsc.2021.07.003

    Article  MathSciNet  Google Scholar 

  35. Zhao D et al (2018) Alkali-induced crumpling of Ti3C2T: X (MXene) to form 3D porous networks for sodium ion storage. Chem Commun 54(36):4533–4536. https://doi.org/10.1039/c8cc00649k

    Article  Google Scholar 

  36. Kajiyama S et al (2016) Sodium-Ion Intercalation Mechanism in MXene Nanosheets. ACS Nano 10(3):3334–3341. https://doi.org/10.1021/acsnano.5b06958

    Article  Google Scholar 

  37. Wang X, Shen X, Gao Y, Wang Z, Yu R, Chen L (2015) Atomic-scale recognition of surface structure and intercalation mechanism of Ti3C2X. J Am Chem Soc 137(7):2715–2721. https://doi.org/10.1021/ja512820k

    Article  Google Scholar 

  38. Liang G et al (2022) Building durable aqueous K-ion capacitors based on MXene family. Nano Research Energy 1:e9120002. https://doi.org/10.26599/NRE.2022.9120002

    Article  Google Scholar 

  39. Sun N et al (2019) MXene-Bonded Flexible Hard Carbon Film as Anode for Stable Na/K-Ion Storage. Adv Funct Mater. https://doi.org/10.1002/adfm.201906282

    Article  Google Scholar 

  40. Hong Z et al (2021) New insights into carbon-based and MXene anodes for Na and K-ion storage: A review. J Energy Chem 62:660–691. https://doi.org/10.1016/j.jechem.2021.04.031

    Article  Google Scholar 

  41. Zhan C, Naguib M, Lukatskaya M, Kent PRC, Gogotsi Y, Jiang DE (2018) Understanding the MXene Pseudocapacitance. J Phys Chem Lett 9(6):1223–1228. https://doi.org/10.1021/acs.jpclett.8b00200

    Article  Google Scholar 

  42. Fan Z et al (2018) A nanoporous MXene film enables flexible supercapacitors with high energy storage. Nanoscale 10(20):9642–9652. https://doi.org/10.1039/C8NR01550C

    Article  Google Scholar 

  43. Hu M, Zhang H, Hu T, Fan B, Wang X, Li Z (2020) Emerging 2D MXenes for supercapacitors: status, challenges and prospects. Chem Soc Rev. https://doi.org/10.1039/D0CS00175A

    Article  Google Scholar 

  44. Syamsai R, Grace AN (2019) Ta4C3 MXene as supercapacitor electrodes. J Alloys Compd 792:1230–1238. https://doi.org/10.1016/j.jallcom.2019.04.096

    Article  Google Scholar 

  45. Peng C et al (2018) High efficiency photocatalytic hydrogen production over ternary Cu/TiO2@Ti3C2Tx enabled by low-work-function 2D titanium carbide. Nano Energy 53:97–107. https://doi.org/10.1016/j.nanoen.2018.08.040

    Article  Google Scholar 

  46. Hong S et al (2019) Two-Dimensional Ti3C2Tx MXene Membranes as Nanofluidic Osmotic Power Generators. ACS Nano 13(8):8917–8925. https://doi.org/10.1021/acsnano.9b02579

    Article  Google Scholar 

  47. Lee KH, Zhang Y-Z, Jiang Q, Kim H, Alkenawi AA, Alshareef HN (2020) Ultrasound-Driven Two-Dimensional Ti3C2Tx MXene Hydrogel Generator. ACS Nano 14(3):3199–3207. https://doi.org/10.1021/acsnano.9b08462

    Article  Google Scholar 

  48. Ran J, Gao G, Li F-T, Ma T-Y, Du A, Qiao S-Z (2017) Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nat Commun 8(1):13907. https://doi.org/10.1038/ncomms13907

    Article  Google Scholar 

  49. Jiang C et al (2019) A multifunctional and highly flexible triboelectric nanogenerator based on MXene-enabled porous film integrated with laser-induced graphene electrode. Nano Energy 66:104121. https://doi.org/10.1016/j.nanoen.2019.104121

    Article  Google Scholar 

  50. Dong Y et al (2018) Metallic MXenes: A new family of materials for flexible triboelectric nanogenerators. Nano Energy 44:103–110. https://doi.org/10.1016/j.nanoen.2017.11.044

    Article  Google Scholar 

  51. Huang D et al (2022) All-MXene thermoelectric nanogenerator. Mater Today Energy. https://doi.org/10.1016/j.mtener.2022.101129

    Article  Google Scholar 

  52. Wang Z et al (2022) Construction of an MXene/Organic Superlattice for Flexible Thermoelectric Energy Conversion. ACS Appl Energy Mater 5(9):11351–11361. https://doi.org/10.1021/acsaem.2c01855

    Article  Google Scholar 

  53. Yan L et al (2022) Highly Thermoelectric ZnO@MXene (Ti3C2Tx) Composite Films Grown by Atomic Layer Deposition. ACS Appl Mater Interfaces 14(30):34562–34570. https://doi.org/10.1021/acsami.2c05003

    Article  Google Scholar 

  54. Agresti A et al (2019) Titanium-carbide MXenes for work function and interface engineering in perovskite solar cells. Nat Mater 18(11):1228–1234. https://doi.org/10.1038/s41563-019-0478-1

    Article  Google Scholar 

  55. Yao X et al (2022) SnCl4-Treated Ti3C2TxMXene Nanosheets for Schottky Junction Solar Cells with Improved Performance. ACS Appl Nano Mater 5(7):10064–10072. https://doi.org/10.1021/acsanm.2c02546

    Article  MathSciNet  Google Scholar 

  56. Heo JH et al (2022) Surface engineering with oxidized Ti3C2Tx MXene enables efficient and stable p-i-n-structured CsPbI3 perovskite solar cells. Joule 6(7):1672–1688. https://doi.org/10.1016/j.joule.2022.05.013

    Article  Google Scholar 

  57. Qu R et al (2020) Vertically-Oriented Ti3C2TxMXene Membranes for High Performance of Electrokinetic Energy Conversion. ACS Nano 14(12):16654–16662. https://doi.org/10.1021/acsnano.0c02202

    Article  Google Scholar 

  58. Yang G et al (2020) Ultrathin Ti3C2Tx (MXene) membrane for pressure-driven electrokinetic power generation. Nano Energy. https://doi.org/10.1016/j.nanoen.2020.104954

    Article  Google Scholar 

  59. Shepelin NA et al (2021) Interfacial piezoelectric polarization locking in printable Ti3C2Tx MXene-fluoropolymer composites. Nat Commun. https://doi.org/10.1038/s41467-021-23341-3

    Article  Google Scholar 

  60. Zhang Z, Yang S, Zhang P, Zhang J, Chen G, Feng X (2019) Mechanically strong MXene/Kevlar nanofiber composite membranes as high-performance nanofluidic osmotic power generators. Nat Commun. https://doi.org/10.1038/s41467-019-10885-8

    Article  Google Scholar 

  61. Wang Q et al (2020) Spider web-inspired ultra-stable 3D Ti3C2TX (MXene) hydrogels constructed by temporary ultrasonic alignment and permanent in-situ self-assembly fixation. Compos B Eng. https://doi.org/10.1016/j.compositesb.2020.108187

    Article  Google Scholar 

  62. Fei M et al (2017) MXene-reinforced alumina ceramic composites. Ceram Int 43(18):17206–17210. https://doi.org/10.1016/j.ceramint.2017.08.202

    Article  Google Scholar 

  63. Sheng X, Zhao Y, Zhang L, Lu X (2019) Properties of two-dimensional Ti3C2 MXene/thermoplastic polyurethane nanocomposites with effective reinforcement via melt blending. Compos Sci Technol 181:107710. https://doi.org/10.1016/j.compscitech.2019.107710

    Article  Google Scholar 

  64. Malaki M, Varma RS (2020) Mechanotribological Aspects of MXene-Reinforced Nanocomposites. Adva Mater. https://doi.org/10.1002/adma.202003154

    Article  Google Scholar 

  65. Hatter CB, Shah J, Anasori B, Gogotsi Y (2020) Micromechanical response of two-dimensional transition metal carbonitride (MXene) reinforced epoxy composites. Compos B Eng 182:107603. https://doi.org/10.1016/j.compositesb.2019.107603

    Article  Google Scholar 

  66. Aakyiir M et al (2020) Elastomer nanocomposites containing MXene for mechanical robustness and electrical and thermal conductivity. Nanotechnology 31(31):315715. https://doi.org/10.1088/1361-6528/ab88eb

    Article  Google Scholar 

  67. Aakyiir M et al (2020) Electrically and thermally conductive elastomer by using MXene nanosheets with interface modification. Chem Eng J 397:125439. https://doi.org/10.1016/j.cej.2020.125439

    Article  Google Scholar 

  68. Mazhar S, Qarni AA, Ul Haq Y, Ul Haq Z, Murtaza I (2020) Promising PVC/MXene based flexible thin film nanocomposites with excellent dielectric, thermal and mechanical properties. Ceram Int 46:12593–12605. https://doi.org/10.1016/j.ceramint.2020.02.023

    Article  Google Scholar 

  69. Gao Q, Pan Y, Zheng G, Liu C, Shen C, Liu X (2021) Flexible multilayered MXene/thermoplastic polyurethane films with excellent electromagnetic interference shielding, thermal conductivity, and management performances. Adv Compos Hybrid Mater 4(2):274–285. https://doi.org/10.1007/s42114-021-00221-4

    Article  Google Scholar 

  70. Chen L, Shi X, Yu N, Zhang X, Du X, Lin J (2018) Measurement and Analysis of Thermal Conductivity of Ti3C2Tx MXene Films. Materials. https://doi.org/10.3390/ma11091701

    Article  Google Scholar 

  71. Yan H, Li W, Li H, Fan X, Zhu M (2019) Ti3C2 MXene nanosheets toward high-performance corrosion inhibitor for epoxy coating. Prog Org Coat 135:156–167. https://doi.org/10.1016/j.porgcoat.2019.06.013

    Article  Google Scholar 

  72. Mirkhani SA, Shayesteh Zeraati A, Aliabadian E, Naguib M, Sundararaj U (2019) High Dielectric Constant and Low Dielectric Loss via Poly(vinyl alcohol)/Ti3C2Tx MXene Nanocomposites. ACS Appl Mater Interfaces 11(20):18599–18608. https://doi.org/10.1021/acsami.9b00393

    Article  Google Scholar 

  73. Tu S, Jiang Q, Zhang X, Alshareef HN (2018) Large Dielectric Constant Enhancement in MXene Percolative Polymer Composites. ACS Nano 12(4):3369–3377. https://doi.org/10.1021/acsnano.7b08895

    Article  Google Scholar 

  74. Liu J et al (2018) Multifunctional, Superelastic, and Lightweight MXene/Polyimide Aerogels. Small. https://doi.org/10.1002/smll.201802479

    Article  Google Scholar 

  75. Loganathan A, Nautiyal P, Boesl B, Agarwal A (2019) Unraveling the multiscale damping properties of two-dimensional layered MXene. Nanomater Energy. https://doi.org/10.1680/jnaen.18.00022

    Article  Google Scholar 

  76. Qu C, Li S, Zhang Y, Wang T, Wang Q, Chen S (2021) Surface modification of Ti3C2-MXene with polydopamine and amino silane for high performance nitrile butadiene rubber composites. Tribol Int 163:107150. https://doi.org/10.1016/j.triboint.2021.107150

    Article  Google Scholar 

  77. Lyu B et al (2019) Large-Area MXene Electrode Array for Flexible Electronics. ACS Nano 13(10):11392–11400. https://doi.org/10.1021/acsnano.9b04731

    Article  Google Scholar 

  78. Mao H et al (2020) MXene Quantum Dot/Polymer Hybrid Structures with Tunable Electrical Conductance and Resistive Switching for Nonvolatile Memory Devices. Adv Electron Mater. https://doi.org/10.1002/aelm.201900493

    Article  Google Scholar 

  79. Guo L et al (2021) Stacked Two-Dimensional MXene Composites for an Energy-Efficient Memory and Digital Comparator. ACS Appl Mater Interfaces 13(33):39595–39605. https://doi.org/10.1021/acsami.1c11014

    Article  Google Scholar 

  80. Gong Y, Xing X, Wang Y, Lv Z, Zhou Y, Han S-T (2021) Emerging MXenes for Functional Memories. Small Science 1(9):2100006. https://doi.org/10.1002/smsc.202100006

    Article  Google Scholar 

  81. Anasori B, Lukatskaya MR, Gogotsi Y (2017) 2D metal carbides and nitrides (MXenes). https://doi.org/10.1038/natrevmats.2016.98.

  82. Luo J-Q, Zhao S, Zhang H-B, Deng Z, Li L, Yu Z-Z (2019) Flexible, stretchable and electrically conductive MXene/natural rubber nanocomposite films for efficient electromagnetic interference shielding. Compos Sci Technol 182:107754. https://doi.org/10.1016/j.compscitech.2019.107754

    Article  Google Scholar 

  83. Liu R, Miao M, Li Y, Zhang J, Cao S, Feng X (2018) Ultrathin Biomimetic Polymeric Ti3C2Tx MXene Composite Films for Electromagnetic Interference Shielding. ACS Appl Mater Interfaces 10(51):44787–44795. https://doi.org/10.1021/acsami.8b18347

    Article  Google Scholar 

  84. Shahzad F et al (2016) Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science. https://doi.org/10.1126/science.aag2421

    Article  Google Scholar 

  85. He J et al (2020) Tunable electromagnetic and enhanced microwave absorption properties in CoFe2O4 decorated Ti3C2 MXene composites. Appl Surf Sci 504(2019):144210. https://doi.org/10.1016/j.apsusc.2019.144210

    Article  Google Scholar 

  86. Dai Y, Wu X, Liu Z, Zhang H-B, Yu Z-Z (2020) Highly sensitive, robust and anisotropic MXene aerogels for efficient broadband microwave absorption. Compos B Eng 200:108263. https://doi.org/10.1016/j.compositesb.2020.108263

    Article  Google Scholar 

  87. Qing Y, Zhou W, Luo F, Zhu D (2016) Titanium carbide (MXene) nanosheets as promising microwave absorbers. Ceram Int 42(14):16412–16416. https://doi.org/10.1016/j.ceramint.2016.07.150

    Article  Google Scholar 

  88. Zhan X, Si C, Zhou J, Sun Z (2020) MXene and MXene-based composites: Synthesis, properties and environment-related applications. Nanoscale Horiz 5(2):235–258. https://doi.org/10.1039/c9nh00571d

    Article  Google Scholar 

  89. Zha XJ et al (2019) Flexible Anti-Biofouling MXene/Cellulose Fibrous Membrane for Sustainable Solar-Driven Water Purification. ACS Appl Mater Interfaces 11(40):36589–36597. https://doi.org/10.1021/acsami.9b10606

    Article  Google Scholar 

  90. Ihsanullah I (2020) Potential of MXenes in Water Desalination: Current Status and Perspectives. Nanomicro Lett 12(1):72. https://doi.org/10.1007/s40820-020-0411-9

    Article  Google Scholar 

  91. Rasool K, Pandey RP, Rasheed PA, Buczek S, Gogotsi Y, Mahmoud KA (2019) Water treatment and environmental remediation applications of two-dimensional metal carbides (MXenes). Mater Today 30:80–102

    Article  Google Scholar 

  92. Ding L et al (2018) MXene molecular sieving membranes for highly efficient gas separation. Nat Commun 9(1):1–7. https://doi.org/10.1038/s41467-017-02529-6

    Article  MathSciNet  Google Scholar 

  93. Ding L, Wei Y, Wang Y, Chen H, Caro J, Wang H (2017) A two-dimensional lamellar membrane: MXene nanosheet stacks. Angew Chem 129(7):1851–1855

    Article  Google Scholar 

  94. Kang KM et al (2017) Selective Molecular Separation on Ti3C2Tx–Graphene Oxide Membranes during Pressure-Driven Filtration: Comparison with Graphene Oxide and MXenes. ACS Appl Mater Interfaces 9(51):44687–44694. https://doi.org/10.1021/acsami.7b10932

    Article  Google Scholar 

  95. Wei S et al (2019) Two-dimensional graphene Oxide/MXene composite lamellar membranes for efficient solvent permeation and molecular separation. J Memb Sci 582:414–422. https://doi.org/10.1016/j.memsci.2019.03.085

    Article  Google Scholar 

  96. Wei H, Wang M, Zheng W, Jiang Z, Huang Y (2020) 2D Ti3C2Tx MXene/aramid nanofibers composite films prepared via a simple filtration method with excellent mechanical and electromagnetic interference shielding properties. Ceram Int 46(5):6199–6204. https://doi.org/10.1016/j.ceramint.2019.11.087

    Article  Google Scholar 

  97. Rasool K, Mahmoud KA, Johnson DJ, Helal M, Berdiyorov GR, Gogotsi Y (2017) Efficient Antibacterial Membrane based on Two-Dimensional Ti3C2Tx (MXene) Nanosheets. Sci Rep 7(1):1598. https://doi.org/10.1038/s41598-017-01714-3

    Article  Google Scholar 

  98. He F, Zhu B, Cheng B, Yu J, Ho W, Macyk W (2020) 2D/2D/0D TiO2/C3N4/Ti3C2 MXene composite S-scheme photocatalyst with enhanced CO2 reduction activity. Appl Catal B. https://doi.org/10.1016/j.apcatb.2020.119006

    Article  Google Scholar 

  99. Bao X et al (2021) TiO2/Ti3C2 as an efficient photocatalyst for selective oxidation of benzyl alcohol to benzaldehyde. Appl Catal B. https://doi.org/10.1016/j.apcatb.2021.119885

    Article  Google Scholar 

  100. Le TA et al (2019) Synergistic Effects of Nitrogen Doping on MXene for Enhancement of Hydrogen Evolution Reaction. ACS Sustain Chem Eng 7(19):16879–16888. https://doi.org/10.1021/acssuschemeng.9b04470

    Article  Google Scholar 

  101. Zhang J et al (2018) Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. Nat Catal 1(12):985–992. https://doi.org/10.1038/s41929-018-0195-1

    Article  Google Scholar 

  102. Cui C et al (2020) Ultrastable MXene@Pt/SWCNTs’ nanocatalysts for hydrogen evolution reaction. Adv Funct Mater. https://doi.org/10.1002/adfm.202000693

    Article  Google Scholar 

  103. Kang Z et al (2021) Recent progress of MXenes and MXene-based nanomaterials for the electrocatalytic hydrogen evolution reaction. J Mater Chem A 9:6089–6108. https://doi.org/10.1039/d0ta11735h

    Article  Google Scholar 

  104. Ashraf I et al (2022) Hydrothermal synthesis and water splitting application of d-Ti3C2 MXene/V2O5 hybrid nanostructures as an efficient bifunctional catalyst. Int J Hydrogen Energy 47(64):27383–27396. https://doi.org/10.1016/j.ijhydene.2022.06.095

    Article  Google Scholar 

  105. Chen J et al (2019) Integrating MXene nanosheets with cobalt-tipped carbon nanotubes for an efficient oxygen reduction reaction. J Mater Chem A 7(3):1281–1286. https://doi.org/10.1039/C8TA10574J

    Article  Google Scholar 

  106. Wen Y, Ma C, Wei Z, Zhu X, Li Z (2019) FeNC/MXene hybrid nanosheet as an efficient electrocatalyst for oxygen reduction reaction. RSC Adv 9(24):13424–13430. https://doi.org/10.1039/C9RA01330J

    Article  Google Scholar 

  107. Jiang L, Duan J, Zhu J, Chen S, Antonietti M (2020) Iron-Cluster-Directed Synthesis of 2D/2D Fe–N–C/MXene Superlattice-like Heterostructure with Enhanced Oxygen Reduction Electrocatalysis. ACS Nano 14(2):2436–2444. https://doi.org/10.1021/acsnano.9b09912

    Article  Google Scholar 

  108. Yu X, Yin W, Wang T, Zhang Y (2019) Decorating g-C3N4 Nanosheets with Ti3C2 MXene Nanoparticles for Efficient Oxygen Reduction Reaction. Langmuir 35(8):2909–2916. https://doi.org/10.1021/acs.langmuir.8b03456

    Article  Google Scholar 

  109. Alimohammadi F et al (2018) Antimicrobial properties of 2D MnO2 and MoS2 nanomaterials vertically aligned on graphene materials and Ti3C2 MXene. Langmuir 34(24):7192–7200

    Article  Google Scholar 

  110. Yu X, Cai X, Cui H, Lee S-W, Yu X-F, Liu B (2017) Fluorine-free preparation of titanium carbide MXene quantum dots with high near-infrared photothermal performances for cancer therapy. Nanoscale 9(45):17859–17864

    Article  Google Scholar 

  111. Zheng K, Li S, Jing L, Chen P, Xie J (2020) Synergistic Antimicrobial Titanium Carbide (MXene) Conjugated with Gold Nanoclusters. Adv Healthc Mater 2001007

  112. Soleymaniha M, Shahbazi M-A, Rafieerad AR, Maleki A, Amiri A (2019) Promoting Role of MXene Nanosheets in Biomedical Sciences: Therapeutic and Biosensing Innovations. Adv Healthc Mater 8(1):1801137. https://doi.org/10.1002/adhm.201801137

    Article  Google Scholar 

  113. Sinha A et al (2018) MXene: An emerging material for sensing and biosensing. TrAC, Trends Anal Chem 105:424–435. https://doi.org/10.1016/j.trac.2018.05.021

    Article  Google Scholar 

  114. Lin H, Chen Y, Shi J (2018) Insights into 2D MXenes for Versatile Biomedical Applications: Current Advances and Challenges Ahead. Adv Sci. https://doi.org/10.1002/advs.201800518

    Article  Google Scholar 

  115. Wang S, Zeng P, Zhu X, Lei C, Huang Y, Nie Z (2020) Chimeric Peptides Self-Assembling on Titanium Carbide MXenes as Biosensing Interfaces for Activity Assay of Post-translational Modification Enzymes. Anal Chem 92(13):8819–8826. https://doi.org/10.1021/acs.analchem.0c00243

    Article  Google Scholar 

  116. Chen X et al (2019) Ti3C2 MXene quantum dots/TiO2 inverse opal heterojunction electrode platform for superior photoelectrochemical biosensing. Sens Actuators B Chem 289:131–137. https://doi.org/10.1016/j.snb.2019.03.052

    Article  Google Scholar 

  117. Lei Y et al (2019) A MXene-Based Wearable Biosensor System for High-Performance In Vitro Perspiration Analysis. Small 15(19):1–10. https://doi.org/10.1002/smll.201901190

    Article  Google Scholar 

  118. Liu Z et al (2018) 2D magnetic titanium carbide MXene for cancer theranostics. J Mater Chem B 6(21):3541–3548

    Article  Google Scholar 

  119. Kumar S, Lei Y, Alshareef NH, Quevedo-Lopez MA, Salama KN (2018) Biofunctionalized two-dimensional Ti3C2 MXenes for ultrasensitive detection of cancer biomarker. Biosens Bioelectron 121:243–249

    Article  Google Scholar 

  120. Han X, Huang J, Lin H, Wang Z, Li P, Chen Y (2018) 2D ultrathin MXene-based drug-delivery nanoplatform for synergistic photothermal ablation and chemotherapy of cancer. Adv Healthc Mater 7(9):1701394

    Article  Google Scholar 

  121. Liu Z et al (2018) 2D superparamagnetic tantalum carbide composite MXenes for efficient breast-cancer theranostics. Theranostics 8(6):1648

    Article  Google Scholar 

  122. Cheng L, Wang X, Gong F, Liu T, Liu Z (2020) 2D Nanomaterials for Cancer Theranostic Applications. Adv Mater 32(13):1–23. https://doi.org/10.1002/adma.201902333

    Article  Google Scholar 

  123. Driscoll N et al (2020) Fabrication of Ti3C2 MXene Microelectrode Arrays for In Vivo Neural Recording,” JoVE e60741

  124. Xu B et al (2016) Ultrathin MXene-micropattern-based field-effect transistor for probing neural activity. Adv Mater 28(17):3333–3339

    Article  Google Scholar 

  125. Driscoll N et al (2018) Two-dimensional Ti3C2 MXene for high-resolution neural interfaces. ACS Nano 12(10):10419–10429

    Article  Google Scholar 

  126. Natu V, Clites M, Pomerantseva E, Barsoum MW (2018) Mesoporous MXene powders synthesized by acid induced crumpling and their use as Na-ion battery anodes. Mater Res Lett 6(4):230–235

    Article  Google Scholar 

  127. Sobolčiak P, Tanvir A, Sadasivuni KK, Krupa I (2019) Piezoresistive sensors based on electrospun mats modified by 2D Ti3C2Tx MXene. Sensors (Switzerland) 19(20):1–8. https://doi.org/10.3390/s19204589

    Article  Google Scholar 

  128. Yue Y et al (2018) 3D hybrid porous Mxene-sponge network and its application in piezoresistive sensor. Nano Energy 50:79–87. https://doi.org/10.1016/j.nanoen.2018.05.020

    Article  Google Scholar 

  129. Ma Y et al (2017) A highly flexible and sensitive piezoresistive sensor based on MXene with greatly changed interlayer distances. Nat Commun 8(1):1207. https://doi.org/10.1038/s41467-017-01136-9

    Article  Google Scholar 

  130. Li L et al (2020) Hydrophobic and Stable MXene–Polymer Pressure Sensors for Wearable Electronics. ACS Appl Mater Interfaces 12(13):15362–15369. https://doi.org/10.1021/acsami.0c00255

    Article  Google Scholar 

  131. Li T et al (2019) A flexible pressure sensor based on an MXene–textile network structure. J Mater Chem C Mater 7(4):1022–1027. https://doi.org/10.1039/C8TC04893B

    Article  Google Scholar 

  132. Qin R et al (2020) A highly sensitive piezoresistive sensor based on MXenes and polyvinyl butyral with a wide detection limit and low power consumption. Nanoscale 12(34):17715–17724. https://doi.org/10.1039/D0NR02012E

    Article  Google Scholar 

  133. Yang K, Yin F, Xia D, Peng H, Yang J, Yuan W (2019) A highly flexible and multifunctional strain sensor based on a network-structured MXene/polyurethane mat with ultra-high sensitivity and a broad sensing range. Nanoscale 11(20):9949–9957. https://doi.org/10.1039/c9nr00488b

    Article  Google Scholar 

  134. Liao H, Guo X, Wan P, Yu G (2019) Conductive MXene Nanocomposite Organohydrogel for Flexible, Healable, Low-Temperature Tolerant Strain Sensors. Adv Funct Mater 29(39):1–9. https://doi.org/10.1002/adfm.201904507

    Article  Google Scholar 

  135. Yang Y et al (2019) Ti3C2Tx MXene-graphene composite films for wearable strain sensors featured with high sensitivity and large range of linear response. Nano Energy 66:104134. https://doi.org/10.1016/j.nanoen.2019.104134

    Article  Google Scholar 

  136. Shi X et al (2019) Bioinspired Ultrasensitive and Stretchable MXene-Based Strain Sensor via Nacre-Mimetic Microscale ‘brick-and-Mortar’ Architecture. ACS Nano 13(1):649–659. https://doi.org/10.1021/acsnano.8b07805

    Article  Google Scholar 

  137. Pu JH et al (2019) Multilayer structured AgNW/WPU-MXene fiber strain sensors with ultrahigh sensitivity and a wide operating range for wearable monitoring and healthcare. J Mater Chem A Mater 7(26):15913–15923. https://doi.org/10.1039/c9ta04352g

    Article  Google Scholar 

  138. Lee E, Vahidmohammadi A, Prorok BC, Yoon YS, Beidaghi M, Kim DJ (2017) Room Temperature Gas Sensing of Two-Dimensional Titanium Carbide (MXene). ACS Appl Mater Interfaces 9(42):37184–37190. https://doi.org/10.1021/acsami.7b11055

    Article  Google Scholar 

  139. Lee SH et al (2020) Room-Temperature, Highly Durable Ti3C2Tx MXene/Graphene Hybrid Fibers for NH3 Gas Sensing. ACS Appl Mater Interfaces 12(9):10434–10442. https://doi.org/10.1021/acsami.9b21765

    Article  Google Scholar 

  140. Kim SJ et al (2018) Metallic Ti3C2Tx MXene Gas Sensors with Ultrahigh Signal-to-Noise Ratio. ACS Nano 12(2):986–993. https://doi.org/10.1021/acsnano.7b07460

    Article  Google Scholar 

  141. Choi J et al (2020) In Situ Formation of Multiple Schottky Barriers in a Ti3C2 MXene Film and its Application in Highly Sensitive Gas Sensors. Adv Funct Mater, 2003998

  142. Sun Q et al (2020) Treatment-dependent surface chemistry and gas sensing behavior of the thinnest member of titanium carbide MXenes. Nanoscale 12(32):16987–16994

    Article  Google Scholar 

  143. Junkaew A, Arroyave R (2018) Enhancement of the selectivity of MXenes (M 2 C, M= Ti, V, Nb, Mo) via oxygen-functionalization: promising materials for gas-sensing and-separation. Phys Chem Chem Phys 20(9):6073–6082

    Article  Google Scholar 

  144. Koh H-J et al (2019) Enhanced selectivity of MXene gas sensors through metal ion intercalation: in situ X-ray diffraction study. ACS Sens 4(5):1365–1372

    Article  Google Scholar 

  145. Yang Z et al (2019) Improvement of Gas and Humidity Sensing Properties of Organ-like MXene by Alkaline Treatment. ACS Sens 4(5):1261–1269. https://doi.org/10.1021/acssensors.9b00127

    Article  Google Scholar 

  146. An H et al (2019) Water Sorption in MXene/Polyelectrolyte Multilayers for Ultrafast Humidity Sensing. ACS Appl Nano Mater 2(2):948–955. https://doi.org/10.1021/acsanm.8b02265

    Article  Google Scholar 

  147. Li N et al (2019) High-Performance Humidity Sensor Based on Urchin-Like Composite of Ti3C2 MXene-Derived TiO2 Nanowires. ACS Appl Mater Interfaces 11(41):38116–38125. https://doi.org/10.1021/acsami.9b12168

    Article  Google Scholar 

  148. Zhou L, Zhang X, Ma L, Gao J, Jiang Y (2017) Acetylcholinesterase/chitosan-transition metal carbides nanocomposites-based biosensor for the organophosphate pesticides detection. Biochem Eng J 128:243–249. https://doi.org/10.1016/j.bej.2017.10.008

    Article  Google Scholar 

  149. Zhou S et al (2019) Ti3C2Tx MXene and polyoxometalate nanohybrid embedded with polypyrrole: Ultra-sensitive platform for the detection of osteopontin. Appl Surf Sci 498:143889. https://doi.org/10.1016/j.apsusc.2019.143889

    Article  Google Scholar 

  150. Desai ML, Basu H, Singhal RK, Saha S, Kailasa SK (2019) Ultra-small two dimensional MXene nanosheets for selective and sensitive fluorescence detection of Ag+ and Mn2+ ions. Colloids Surf A Physicochem Eng Asp 565:70–77. https://doi.org/10.1016/j.colsurfa.2018.12.051

    Article  Google Scholar 

  151. Michael J, Qifeng Z, Danling W (2019) Titanium carbide MXene: Synthesis, electrical and optical properties and their applications in sensors and energy storage devices. Nanomaterials and Nanotechnology 9:1847980418824470. https://doi.org/10.1177/1847980418824470

    Article  Google Scholar 

  152. Chen Y et al (2020) Refractive Index Sensors Based on Ti3C2Tx MXene Fibers. ACS Appl Nano Mater 3(1):303–311. https://doi.org/10.1021/acsanm.9b01889

    Article  MathSciNet  Google Scholar 

  153. Zuo Y et al (2020) Broadband multi-wavelength optical sensing based on photothermal effect of 2D MXene films. Nanophotonics 9(1):123–131. https://doi.org/10.1515/nanoph-2019-0338

    Article  Google Scholar 

  154. Cao Z et al (2019) Highly flexible and sensitive temperature sensors based on Ti3C2T: x (MXene) for electronic skin. J Mater Chem A Mater 7(44):25314–25323. https://doi.org/10.1039/c9ta09225k

    Article  Google Scholar 

  155. Adepu V, Mattela V, Sahatiya P (2021) A remarkably ultra-sensitive large area matrix of MXene based multifunctional physical sensors (pressure, strain, and temperature) for mimicking human skin. J Mater Chem B 9(22):4523–4534. https://doi.org/10.1039/D1TB00947H

    Article  Google Scholar 

  156. Saeidi-Javash M et al (2021) All-Printed MXene–Graphene Nanosheet-Based Bimodal Sensors for Simultaneous Strain and Temperature Sensing. ACS Appl Electron Mater 3(5):2341–2348. https://doi.org/10.1021/acsaelm.1c00218

    Article  Google Scholar 

  157. Tran MH et al (2020) Synthesis of a Smart Hybrid MXene with Switchable Conductivity for Temperature Sensing. ACS Appl Nano Mater 3(5):4069–4076. https://doi.org/10.1021/acsanm.0c00118

    Article  Google Scholar 

  158. Cao Z et al (2019) Highly flexible and sensitive temperature sensors based on Ti3C2Tx (MXene) for electronic skin. J Mater Chem A 7(44):25314–25323. https://doi.org/10.1039/C9TA09225K

    Article  Google Scholar 

  159. Umrao S et al (2019) MXene artificial muscles based on ionically cross-linked Ti3C2Tx electrode for kinetic soft robotics. Sci Robot 4(33):eaaw7797. https://doi.org/10.1126/scirobotics.aaw7797

    Article  Google Scholar 

  160. Wu M et al (2022) A Fully 3D-Printed Tortoise-Inspired Soft Robot with Terrains-Adaptive and Amphibious Landing Capabilities. Adv Mater Technol. https://doi.org/10.1002/admt.202200536

    Article  Google Scholar 

  161. McLellan K, Li T, Sun Y-C, Jakubinek MB, Naguib HE (2022) 4D Printing of MXene Composites for Deployable Actuating Structures. ACS Appl Polym Mater. https://doi.org/10.1021/acsapm.2c01192

    Article  Google Scholar 

  162. Liu W et al (2021) Bionic MXene actuator with multiresponsive modes. Chem Eng J 417:129288. https://doi.org/10.1016/j.cej.2021.129288

    Article  Google Scholar 

  163. Park TH et al (2019) Shape-Adaptable 2D Titanium Carbide (MXene) Heater. ACS Nano 13(6):6835–6844. https://doi.org/10.1021/acsnano.9b01602

    Article  Google Scholar 

  164. Come J et al (2015) Controlling the actuation properties of MXene paper electrodes upon cation intercalation. Nano Energy 17:27–35. https://doi.org/10.1016/j.nanoen.2015.07.028

    Article  Google Scholar 

  165. Cai G, Ciou J-H, Liu Y, Jiang Y, Lee PS (2019) Leaf-inspired multiresponsive MXene-based actuator for programmable smart devices. [Online]. Available: https://www.science.org

  166. Pang D, Alhabeb M, Mu X, Dall’Agnese Y, Gogotsi Y, Gao Y (2019) Electrochemical actuators based on two-dimensional Ti3C2Tx (MXene). Nano Lett 19:(10):7443–7448. https://doi.org/10.1021/acs.nanolett.9b03147

  167. Li K et al (2019) Biomimetic MXene Textures with Enhanced Light-to-Heat Conversion for Solar Steam Generation and Wearable Thermal Management. Adv Energy Mater. https://doi.org/10.1002/aenm.201901687

    Article  Google Scholar 

  168. Cao WT et al (2019) Two-dimensional MXene-reinforced robust surface superhydrophobicity with self-cleaning and photothermal-actuating binary effects. Mater Horiz 6(5):1057–1065. https://doi.org/10.1039/c8mh01566j

    Article  Google Scholar 

  169. Meng J, An Z, Liu Y, Sun X, Li J (2022) MXene-based hydrogels towards the photothermal applications. J Phys D Appl Phys. https://doi.org/10.1088/1361-6463/ac79d9

    Article  Google Scholar 

  170. Wang J et al (2020) Highly Conductive MXene Film Actuator Based on Moisture Gradients. Angew Chem 59(33):14029–14033. https://doi.org/10.1002/anie.202003737

    Article  Google Scholar 

  171. Li L, Zhao S, Luo X-J, Zhang H-B, Yu Z-Z (2021) Smart MXene-Based Janus films with multi-responsive actuation capability and high electromagnetic interference shielding performances. Carbon N Y 175:594–602. https://doi.org/10.1016/j.carbon.2020.10.090

    Article  Google Scholar 

  172. Cao J et al (2020) Ultrarobust Ti3C2Tx MXene-Based Soft Actuators via Bamboo-Inspired Mesoscale Assembly of Hybrid Nanostructures. ACS Nano 14(6):7055–7065. https://doi.org/10.1021/acsnano.0c01779

    Article  Google Scholar 

  173. Deng Z et al (2022) Controllable Surface-Grafted MXene Inks for Electromagnetic Wave Modulation and Infrared Anti-Counterfeiting Applications. ACS Nano 16(10):16976–16986. https://doi.org/10.1021/acsnano.2c07084

    Article  Google Scholar 

  174. Sreenilayam SP, Ul Ahad I, Nicolosi V, Brabazon D (2021) MXene materials based printed flexible devices for healthcare, biomedical and energy storage applications. Mater Today 43:99–131. https://doi.org/10.1016/j.mattod.2020.10.025

    Article  Google Scholar 

  175. Das A, Gilmer EL, Biria S, Bortner MJ (2021) Importance of Polymer Rheology on Material Extrusion Additive Manufacturing: Correlating Process Physics to Print Properties. ACS Appl Polym Mater. https://doi.org/10.1021/acsapm.0c01228

    Article  Google Scholar 

  176. Zheng S et al (2021) Multitasking MXene Inks Enable High-Performance Printable Microelectrochemical Energy Storage Devices for All-Flexible Self-Powered Integrated Systems. Adv Mater 33(10):1–10. https://doi.org/10.1002/adma.202005449

    Article  Google Scholar 

  177. Naguib M, Mochalin VN, Barsoum MW, Gogotsi Y (2014) 25th anniversary article: MXenes: A new family of two-dimensional materials. Adv Mater 26(7):992–1005. https://doi.org/10.1002/adma.201304138

    Article  Google Scholar 

  178. Naguib M, Unocic RR, Armstrong BL, Nanda J (2015) Large-scale delamination of multi-layers transition metal carbides and carbonitrides ‘mXenes.’ Dalton Trans 44(20):9353–9358. https://doi.org/10.1039/c5dt01247c

    Article  Google Scholar 

  179. M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark, and S. Sin, “Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti 3 C 2 T,” 2017, doi: https://doi.org/10.1021/acs.chemmater.7b02847.

  180. Parvez K, Worsley R, Alieva A, Felten A, Casiraghi C (2019) Water-based and inkjet printable inks made by electrochemically exfoliated graphene. Carbon N Y 149:213–221. https://doi.org/10.1016/j.carbon.2019.04.047

    Article  Google Scholar 

  181. Torrisi F et al (2012) Inkjet-printed graphene electronics. ACS Nano 6(4):2992–3006. https://doi.org/10.1021/nn2044609

    Article  Google Scholar 

  182. Yang W et al (2019) 3D Printing of Freestanding MXene Architectures for Current-Collector-Free Supercapacitors. Adv Mater 31(37):1–8. https://doi.org/10.1002/adma.201902725

    Article  Google Scholar 

  183. Maleski K, Ren CE, Zhao MQ, Anasori B, Gogotsi Y (2018) Size-Dependent Physical and Electrochemical Properties of Two-Dimensional MXene Flakes. ACS Appl Mater Interfaces 10(29):24491–24498. https://doi.org/10.1021/acsami.8b04662

    Article  Google Scholar 

  184. X. Jiang et al., (2019) “Inkjet-printed MXene micro-scale devices for integrated broadband ultrafast photonics,” NPJ 2D Mater Appl, vol. 3, no. 1, p. 34, , doi: https://doi.org/10.1038/s41699-019-0117-3.

  185. M. Saeidi-javash et al., “All-Printed MXene − Graphene Nanosheet-Based Bimodal Sensors for Simultaneous Strain and Temperature Sensing,” 2021, doi: https://doi.org/10.1021/acsaelm.1c00218.

  186. Schwab A, Levato R, D’Este M, Piluso S, Eglin D, Malda J (2020) Printability and Shape Fidelity of Bioinks in 3D Bioprinting. Chem Rev 120(19):11028–11055. https://doi.org/10.1021/acs.chemrev.0c00084

    Article  Google Scholar 

  187. N. Paxton, W. Smolan, T. Böck, F. Melchels, J. Groll, and T. Jungst, “Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability,” Biofabrication, vol. 9, no. 4, 2017, doi: https://doi.org/10.1088/1758-5090/aa8dd8.

  188. J. Sun, W. Zhou, L. Yan, D. Huang, and L. ya Lin, “Extrusion-based food printing for digitalized food design and nutrition control,” J Food Eng, vol. 220, pp. 1–11, 2018, doi: https://doi.org/10.1016/j.jfoodeng.2017.02.028.

  189. Orangi J, Hamade F, Davis VA, Beidaghi M (2020) 3D Printing of Additive-Free 2D Ti3C2Tx (MXene) Ink for Fabrication of Micro-Supercapacitors with Ultra-High Energy Densities. ACS Nano 14(1):640–650. https://doi.org/10.1021/acsnano.9b07325

    Article  Google Scholar 

  190. C. (John) Zhang et al., “Additive-free MXene inks and direct printing of micro-supercapacitors,” Nat Commun, vol. 10, no. 1, pp. 1–9, 2019, doi: https://doi.org/10.1038/s41467-019-09398-1.

  191. Compton BG, Lewis JA (2014) 3D-printing of lightweight cellular composites. Adv Mater 26(34):5930–5935. https://doi.org/10.1002/adma.201401804

    Article  Google Scholar 

  192. Fu K et al (2016) Graphene Oxide-Based Electrode Inks for 3D-Printed Lithium-Ion Batteries. Adv Mater 28(13):2587–2594. https://doi.org/10.1002/adma.201505391

    Article  Google Scholar 

  193. Ambrosi A, Pumera M (2016) 3D-printing technologies for electrochemical applications. Chem Soc Rev 45(10):2740–2755. https://doi.org/10.1039/C5CS00714C

    Article  Google Scholar 

  194. Moyano JJ, Gómez-Gómez A, Pérez-Coll D, Belmonte M, Miranzo P, Osendi MI (2019) Filament printing of graphene-based inks into self-supported 3D architectures. Carbon N Y 151:94–102. https://doi.org/10.1016/j.carbon.2019.05.059

    Article  Google Scholar 

  195. Guo H, Lv R, Bai S (2019) Recent advances on 3D printing graphene-based composites. Nano Materials Science 1(2):101–115. https://doi.org/10.1016/j.nanoms.2019.03.003

    Article  Google Scholar 

  196. Sayyar S, Cornock R, Murray E, Beirne S, Officer DL, Wallace GG (2014) Extrusion Printed Graphene/Polycaprolactone/Composites for Tissue Engineering. Mater Sci Forum 773–774:496–502. https://doi.org/10.4028/www.scientific.net/MSF.773-774.496

    Article  Google Scholar 

  197. Yu L, Fan Z, Shao Y, Tian Z, Sun J, Liu Z (2019) Versatile N-Doped MXene Ink for Printed Electrochemical Energy Storage Application. Adv Energy Mater 9(34):1–8. https://doi.org/10.1002/aenm.201901839

    Article  Google Scholar 

  198. W. Tian et al., “Multifunctional Nanocomposites with High Strength and Capacitance Using 2D MXene and 1D Nanocellulose,” Advanced Materials, vol. 31, no. 41, 2019, doi: https://doi.org/10.1002/adma.201902977.

  199. J. Liu et al., “Additive Manufacturing of Ti3C2-MXene-Functionalized Conductive Polymer Hydrogels for Electromagnetic-Interference Shielding,” Advanced Materials, vol. 34, no. 5, 2022, doi: https://doi.org/10.1002/adma.202106253.

  200. Fan Z et al (2020) 3D Printing of Porous Nitrogen-Doped Ti3C2 MXene Scaffolds for High-Performance Sodium-Ion Hybrid Capacitors. ACS Nano 14(1):867–876. https://doi.org/10.1021/acsnano.9b08030

    Article  Google Scholar 

  201. Cao WT, Ma C, Mao DS, Zhang J, Ma MG, Chen F (2019) MXene-Reinforced Cellulose Nanofibril Inks for 3D-Printed Smart Fibres and Textiles. Adv Funct Mater 29(51):1–12. https://doi.org/10.1002/adfm.201905898

    Article  Google Scholar 

  202. Cain JD et al (2019) Sculpting Liquids with Two-Dimensional Materials: The Assembly of Ti3C2Tx MXene Sheets at Liquid-Liquid Interfaces. ACS Nano 13(11):12385–12392. https://doi.org/10.1021/acsnano.9b05088

    Article  Google Scholar 

  203. Rastin H et al (2020) 3D bioprinting of cell-laden electroconductive MXene nanocomposite bioinks. Nanoscale 12(30):16069–16080. https://doi.org/10.1039/d0nr02581j

    Article  Google Scholar 

  204. K. Shen, B. Li, and S. Yang, “3D printing dendrite-free lithium anodes based on the nucleated MXene arrays,” Energy Storage Mater, vol. 24, no. August 2019, pp. 670–675, 2020, doi: https://doi.org/10.1016/j.ensm.2019.08.015.

  205. D. Brzeski et al., “Design of thermoset composites for high-speed additive manufacturing of lightweight sound absorbing micro-scaffolds,” Addit Manuf, vol. 47, no. July, p. 102245, 2021, doi: https://doi.org/10.1016/j.addma.2021.102245.

  206. Tetik H et al (2021) 3D Printed MXene Aerogels with Truly 3D Macrostructure and Highly Engineered Microstructure for Enhanced Electrical and Electrochemical Performance. Adv Mater. https://doi.org/10.1002/adma.202104980

    Article  Google Scholar 

  207. Martin GD, Hoath SD, Hutchings IM (2008) Inkjet printing - The physics of manipulating liquid jets and drops. J Phys Conf Ser 105(1):1–14. https://doi.org/10.1088/1742-6596/105/1/012001

    Article  Google Scholar 

  208. X. Shen and H. E. Naguib, “A robust ink deposition system for binder jetting and material jetting,” Addit Manuf, vol. 29, no. February, p. 100820, 2019, doi: https://doi.org/10.1016/j.addma.2019.100820.

  209. Yoo H, Kim C (2015) Experimental studies on formation, spreading and drying of inkjet drop of colloidal suspensions. Colloids Surf A Physicochem Eng Asp 468:234–245. https://doi.org/10.1016/j.colsurfa.2014.12.032

    Article  Google Scholar 

  210. I. A. Kinloch, J. Suhr, J. Lou, R. J. Young, and P. M. Ajayan, “Composites with carbon nanotubes and graphene: An outlook,” Science (1979), vol. 362, no. 6414, pp. 547–553, 2018, doi: https://doi.org/10.1126/science.aat7439.

  211. Paton KR et al (2014) Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat Mater 13(6):624–630. https://doi.org/10.1038/nmat3944

    Article  Google Scholar 

  212. X. Shen, M. Chu, F. Hariri, G. Vedula, and H. E. Naguib, “Binder Jetting Fabrication of Graphene / PVOH Composites for Flexible Electronics,” Addit Manuf, vol. 36, no. January, p. 101565, 2020, doi: https://doi.org/10.1016/j.addma.2020.101565.

  213. I. Fernando, T. Qian, and Y. Zhou, “Long term impact of surfactants & polymers on the colloidal stability, aggregation and dissolution of silver nanoparticles,” Environ Res, vol. 179, Dec. 2019, doi: https://doi.org/10.1016/j.envres.2019.108781.

  214. S. Majee, M. Song, S. L. Zhang, and Z. Bin Zhang, “Scalable inkjet printing of shear-exfoliated graphene transparent conductive films,” Carbon N Y, vol. 102, pp. 51–57, 2016, doi: https://doi.org/10.1016/j.carbon.2016.02.013.

  215. Secor EB, Prabhumirashi PL, Puntambekar K, Geier ML, Hersam MC (2013) Inkjet printing of high conductivity, flexible graphene patterns. J Phys Chem Lett 4(8):1347–1351. https://doi.org/10.1021/jz400644c

    Article  Google Scholar 

  216. Hilder M, Winther-Jensen B, Clark NB (2009) Paper-based, printed zinc-air battery. J Power Sources 194(2):1135–1141. https://doi.org/10.1016/j.jpowsour.2009.06.054

    Article  Google Scholar 

  217. Vural M et al (2018) Inkjet Printing of Self-Assembled 2D Titanium Carbide and Protein Electrodes for Stimuli-Responsive Electromagnetic Shielding. Adv Funct Mater 28(32):1–10. https://doi.org/10.1002/adfm.201801972

    Article  Google Scholar 

  218. Zhang CJ et al (2017) Oxidation Stability of Colloidal Two-Dimensional Titanium Carbides (MXenes). Chem Mater 29(11):4848–4856. https://doi.org/10.1021/acs.chemmater.7b00745

    Article  Google Scholar 

  219. A. Saleh, “Inkjet-printed Ti3C2Tx MXene electrodes for multimodal cutaneous biosensing,” Journal of Physics: Materials, vol. 3, p. 044004, 2020, doi: https://doi.org/10.1088/2515-7639/abb361.

  220. Uzun S et al (2021) Additive-Free Aqueous MXene Inks for Thermal Inkjet Printing on Textiles. Small 17(1):1–12. https://doi.org/10.1002/smll.202006376

    Article  Google Scholar 

  221. Yao Y et al (2020) All-Optical Modulator Using MXene Inkjet-Printed Microring Resonator. IEEE J Sel Top Quantum Electron 26(5):1–6. https://doi.org/10.1109/JSTQE.2020.2982985

    Article  Google Scholar 

  222. E. Jabari and E. Toyserkani, “Micro-scale aerosol-jet printing of graphene interconnects,” Carbon N Y, vol. 91, 2015, doi: https://doi.org/10.1016/j.carbon.2015.04.094.

  223. E. Jabari and E. Toyserkani, “Laser heat treatment of aerosol-jet additive manufactured graphene patterns,” J Phys D Appl Phys, vol. 48, no. 37, 2015, doi: https://doi.org/10.1088/0022-3727/48/37/375503.

  224. E. Jabari, F. Ahmed, F. Liravi, E. B. Secor, L. Lin, and E. Toyserkani, “2D printing of graphene: A review,” 2d Mater, vol. 6, no. 4, 2019, doi: https://doi.org/10.1088/2053-1583/ab29b2.

  225. Zhang H, Moon SK, Ngo TH (2019) Hybrid Machine Learning Method to Determine the Optimal Operating Process Window in Aerosol Jet 3D Printing. ACS Appl Mater Interfaces 11(19):17994–18003. https://doi.org/10.1021/acsami.9b02898

    Article  Google Scholar 

  226. E. B. Secor, “Principles of aerosol jet printing,” Flexible and Printed Electronics, vol. 3, no. 3, 2018, doi: https://doi.org/10.1088/2058-8585/aace28.

  227. G. Basara et al., “Electrically conductive 3D printed Ti3C2Tx MXene-PEG composite constructs for cardiac tissue engineering,” Acta Biomater, no. xxxx, 2020, doi: https://doi.org/10.1016/j.actbio.2020.12.033.

  228. Moldenhauer D, Nguyen DCY, Jescheck L, Hack F, Fischer D, Schneeberger A (2020) 3D screen printing – An innovative technology for large-scale manufacturing of pharmaceutical dosage forms. Int J Pharm 592(September):2021. https://doi.org/10.1016/j.ijpharm.2020.120096

    Article  Google Scholar 

  229. Abdolhosseinzadeh S, Schneider R, Verma A, Heier J, Nüesch F, Zhang C (2020) Turning Trash into Treasure: Additive Free MXene Sediment Inks for Screen-Printed Micro-Supercapacitors. Adv Mater 32(17):1–9. https://doi.org/10.1002/adma.202000716

    Article  Google Scholar 

  230. S. Xu, Y. Dall’Agnese, G. Wei, C. Zhang, Y. Gogotsi, and W. Han, “Screen-printable microscale hybrid device based on MXene and layered double hydroxide electrodes for powering force sensors,” Nano Energy, vol. 50, no. May, pp. 479–488, 2018, doi: https://doi.org/10.1016/j.nanoen.2018.05.064.

  231. Lee DY, Shin YS, Park SE, Yu TU, Hwang J (2007) Electrohydrodynamic printing of silver nanoparticles by using a focused nanocolloid jet. Appl Phys Lett 90(8):1–4. https://doi.org/10.1063/1.2645078

    Article  Google Scholar 

  232. Lee A, Jin H, Dang HW, Choi KH, Ahn KH (2013) Optimization of experimental parameters to determine the jetting regimes in electrohydrodynamic printing. Langmuir 29(44):13630–13639. https://doi.org/10.1021/la403111m

    Article  Google Scholar 

  233. Park JU et al (2007) High-resolution electrohydrodynamic jet printing. Nat Mater 6(10):782–789. https://doi.org/10.1038/nmat1974

    Article  Google Scholar 

  234. Barton K, Mishra S, Shorter KA, Alleyne A, Ferreira P, Rogers J (2010) A desktop electrohydrodynamic jet printing system. Mechatronics 20(5):611–616. https://doi.org/10.1016/j.mechatronics.2010.05.004

    Article  Google Scholar 

  235. Z. Fan et al., “Binder-Free Ti 3 C 2 T x MXene Doughs with High Redispersibility,” ACS Mater Lett, pp. 1598–1605, 2020, doi: https://doi.org/10.1021/acsmaterialslett.0c00422.

  236. Yu L, Li W, Wei C, Yang Q, Shao Y, Sun J (2020) 3D Printing of NiCoP/Ti3C2 MXene Architectures for Energy Storage Devices with High Areal and Volumetric Energy Density. Nanomicro Lett 12(1):1–13. https://doi.org/10.1007/s40820-020-00483-5

    Article  Google Scholar 

  237. S. Pan et al., “2D MXene-Integrated 3D-Printing Scaffolds for Augmented Osteosarcoma Phototherapy and Accelerated Tissue Reconstruction,” Advanced Science, vol. 7, no. 2, 2020, doi: https://doi.org/10.1002/advs.201901511.

  238. Uzun S et al (2020) Additive-Free Aqueous MXene Inks for Thermal Inkjet Printing on Textiles. Small 2006376:1–12. https://doi.org/10.1002/smll.202006376

    Article  Google Scholar 

  239. Ma J et al (2021) Aqueous MXene / PH1000 Hybrid Inks for Inkjet-Printing Micro-Supercapacitors with Unprecedented Volumetric Capacitance and Modular Self-Powered Microelectronics. Advanced Ener 2100746:1–9. https://doi.org/10.1002/aenm.202100746

    Article  Google Scholar 

  240. Zheng J et al (2018) An inkjet printed Ti3C2-GO electrode for the electrochemical sensing of hydrogen peroxide. J Electrochem Soc 165(5):B227–B231. https://doi.org/10.1149/2.0051807jes

    Article  Google Scholar 

  241. Li H, Li X, Liang J, Chen Y (2019) Hydrous RuO 2 -Decorated MXene Coordinating with Silver Nanowire Inks Enabling Fully Printed Micro-Supercapacitors with Extraordinary Volumetric Performance. Adv Energy Mater 9(15):1–13. https://doi.org/10.1002/aenm.201803987

    Article  Google Scholar 

Download references

Acknowledgements

Thankyou to the NSERC network for Holistic Innovation in Additive Manufacturing (HI-AM).

Author information

Authors and Affiliations

Authors

Contributions

TL: writing of Sect. 1, 2, 3, and 7. Preparation, analysis, and compilation of all figures. Final editing. Revision. EJ: manuscript proposal. Writing of Sects. 4 and 5. Conceptualization and final editing. KM: writing of Sect. 6. HEN: conceptualization, final editing, and supervision.

Corresponding author

Correspondence to Hani E. Naguib.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article. The authors did not receive financial support from any organization for the submitted work.

Ethical approval

The manuscript does not contain clinical studies or patient data.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Jabari, E., McLellan, K. et al. Review of additive manufacturing with 2D MXene: techniques, applications, and future perspectives. Prog Addit Manuf 8, 1587–1617 (2023). https://doi.org/10.1007/s40964-023-00424-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40964-023-00424-9

Keywords

Navigation