Skip to main content
Log in

Effect of printing parameters on the tensile strength of FDM 3D samples: a meta-analysis focusing on layer thickness and sample orientation

  • Full Research Article
  • Published:
Progress in Additive Manufacturing Aims and scope Submit manuscript

Abstract

3D printing is an interesting and growing field in many areas. Despite advantages, several issues regarding the quality and strength of products have remained unresolved. Among these issues are the effects of printing process parameters on the mechanical properties of a printed object. In this study, the effects of the layer thickness and print orientation on the tensile strength of FDM-printed samples were considered. According to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, eligible studies in major databases were found. The pooled effect size, heterogeneity and publication bias were assessed using statistical analysis. Results showed that increasing layer thickness might reduce the tensile strength of FDM-printed samples up to 20%, while increasing the printing angle of the sample on the build platform decreased the tensile strength to about 12%. Furthermore, adjusting extruder temperature to higher values and printing speeds to lower values might reduce the heterogeneity of results between studies. In conclusion, when enhanced tensile strength is required, it is recommended to focus mainly on the layer thickness than printing orientation, adjust lower layer thickness and orient the model parallel to the build platform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Sathish T, Vijayakumar MD, Krishnan AA (2018) Design and fabrication of industrial components using 3D printing. Mater Today Proc 5:14489–14498. https://doi.org/10.1016/j.matpr.2018.03.036

    Article  Google Scholar 

  2. Dawood A, Marti MB, Sauret-Jackson V, Darwood A (2015) 3D printing in dentistry. Br Dent J 219:521–529. https://doi.org/10.1038/sj.bdj.2015.914

    Article  Google Scholar 

  3. Khalid M, Peng Q (2020) Investigation of printing parameters of additive manufacturing process for sustainability using design of experiments. In: Proceedings of the ASME design engineering technical conference. https://doi.org/10.1115/DETC2020-22771

  4. Sandler N, Salmela I, Fallarero A, Rosling A, Khajeheian M, Kolakovic R, Genina N, Nyman J, Vuorela P (2014) Towards fabrication of 3D printed medical devices to prevent biofilm formation. Int J Pharm 459:62–64. https://doi.org/10.1016/j.ijpharm.2013.11.001

    Article  Google Scholar 

  5. Buonamici F, Carfagni M, Furferi R, Governi L, Saccardi M, Volpe Y (2018) Optimizing fabrication outcome in low-cost FDM machines. Part-1 Metrics. Manuf Technol 18:372–378. https://doi.org/10.21062/ujep/108.2018/a/1213-2489/MT/18/3/372

    Article  Google Scholar 

  6. Ahmed SW, Hussain G, Altaf K, Ali S, Alkahtani M, Abidi MH, Alzabidi A (2020) On the effects of process parameters and optimization of interlaminate bond strength in 3D printed ABS/CF-PLA composite. Polymers. https://doi.org/10.3390/POLYM12092155

    Article  Google Scholar 

  7. Amini M, Reisinger A, Pahr DH (2020) Influence of processing parameters on mechanical properties of a 3D-printed trabecular bone microstructure. J Biomed Mater Res B Appl Biomater 108:38–47. https://doi.org/10.1002/jbm.b.34363

    Article  Google Scholar 

  8. Asadi-Eydivand M, Solati-Hashjin M, Farzad A, Abu Osman NA (2016) Effect of technical parameters on porous structure and strength of 3D printed calcium sulfate prototypes. Robot Comput Integr Manuf 37:57–67. https://doi.org/10.1016/j.rcim.2015.06.005

    Article  Google Scholar 

  9. Kovan V, Tezel T, Topal E, Camurlu H (2018) Printing parameters effect on surface characteristics of 3D printed PLA materials. Mach Technol Mater 12:266–269

    Google Scholar 

  10. Dey A, Yodo N (2019) A systematic survey of FDM process parameter optimization and their influence on part characteristics. J Manuf Mater Process 3:64. https://doi.org/10.3390/jmmp3030064

    Article  Google Scholar 

  11. Markiz N, Horváth E, Ficzere P (2020) Influence of printing direction on 3D printed ABS specimens. Prod Eng Arch 26:127–130. https://doi.org/10.30657/pea.2020.26.24

    Article  Google Scholar 

  12. Cantrell JT, Rohde S, Damiani D, Gurnani R, DiSandro L, Anton J, Young A, Jerez A, Steinbach D, Kroese C (2017) Experimental characterization of the mechanical properties of 3D-printed ABS and polycarbonate parts. Rapid Prototyp J. https://doi.org/10.1007/978-3-319-41600-7_11

    Article  Google Scholar 

  13. Alafaghani AA, Qattawi A, Alrawi B, Guzman A (2017) Experimental optimization of fused deposition modelling processing parameters: a design-for-manufacturing approach. Proc Manuf 10:791–803. https://doi.org/10.1016/j.promfg.2017.07.079

    Article  Google Scholar 

  14. Bellini A, Güçeri S (2003) Mechanical characterization of parts fabricated using fused deposition modeling. Rapid Prototyp J. https://doi.org/10.1108/13552540310489631

    Article  Google Scholar 

  15. Griffiths CA, Howarth J, De Almeida-Rowbotham G, Rees A (2016) A design of experiments approach to optimise tensile and notched bending properties of fused deposition modelling parts. In: Proceedings of the institution of mechanical engineers, Part B: Journal of Engineering Manufacture, pp 1502–1512. https://doi.org/10.1177/0954405416640182

  16. Lin K-W, Hu C-J, Yang W-W, Chou L-W, Wei S-H, Chen C-S, Sun P-C (2019) Biomechanical evaluation and strength test of 3D-printed foot orthoses. Appl Bionics Biomech. https://doi.org/10.1155/2019/4989534

    Article  Google Scholar 

  17. Ouhsti M, El Haddadi B, Belhouideg S (2018) Effect of printing parameters on the mechanical properties of parts fabricated with open-source 3D printers in PLA by fused deposition modeling. Mech Mech Eng 22:895–908. https://doi.org/10.2478/mme-2018-0070

    Article  Google Scholar 

  18. Raut S, Jatti VS, Khedkar NK, Singh TP (2014) Investigation of the effect of built orientation on mechanical properties and total cost of FDM parts. Proc Mater Sci 6:1625–1630. https://doi.org/10.1016/j.mspro.2014.07.146

    Article  Google Scholar 

  19. Rayegani F, Onwubolu GC (2014) Fused deposition modelling (FDM) process parameter prediction and optimization using group method for data handling (GMDH) and differential evolution (DE). Int J Adv Manuf Technol 73:509–519. https://doi.org/10.1007/s00170-014-5835-2

    Article  Google Scholar 

  20. Sood AK, Ohdar RK, Mahapatra SS (2010) Parametric appraisal of fused deposition modeling process using the grey Taguchi method. Proc IMechE 224:135–145. https://doi.org/10.1243/09544054JEM1565

    Article  Google Scholar 

  21. Wang S, Ma Y, Deng Z, Zhang S, Cai J (2020) Effects of fused deposition modeling process parameters on tensile, dynamic mechanical properties of 3D printed polylactic acid materials. PolymTest 86:106483. https://doi.org/10.1016/j.polymertesting.2020.106483

    Article  Google Scholar 

  22. Zhao Y, Chen Y, Zhou Y (2019) Novel mechanical models of tensile strength and elastic property of FDM AM PLA materials: experimental and theoretical analyses. Mater Des 181:108089. https://doi.org/10.1016/j.matdes.2019.108089

    Article  Google Scholar 

  23. Christiyan KGJ, Chandrasekhar U, Venkateswarlu K (2016) A study on the influence of process parameters on the Mechanical Properties of 3D printed ABS composite. IOP Conf Ser Mater Sci Eng 114:012109. https://doi.org/10.1088/1757-899x/114/1/012109

    Article  Google Scholar 

  24. Altan M, Eryildiz M, Gumus B, Kahraman Y (2018) Effects of process parameters on the quality of PLA products fabricated by fused deposition modeling (FDM): Surface roughness and tensile strength. Mater Test 60:471–477. https://doi.org/10.3139/120.111178

    Article  Google Scholar 

  25. Wang P, Zou B, Xiao H, Ding S, Huang C (2019) Effects of printing parameters of fused deposition modeling on mechanical properties, surface quality, and microstructure of PEEK. J Mater Process Technol 271:62–74. https://doi.org/10.1016/j.jmatprotec.2019.03.016

    Article  Google Scholar 

  26. Wang P, Zou B, Ding S, Li L, Huang C (2020) Effects of FDM-3D printing parameters on mechanical properties and microstructure of CF/PEEK and GF/PEEK. Chin J Aeronaut. https://doi.org/10.1016/j.cja.2020.05.040

    Article  Google Scholar 

  27. Samykano M, Selvamani S, Kadirgama K, Ngui W, Kanagaraj G, Sudhakar K (2019) Mechanical property of FDM printed ABS: influence of printing parameters. Int J Adv Manuf Technol 102:2779–2796. https://doi.org/10.1007/s00170-019-03313-0

    Article  Google Scholar 

  28. Hassanifard S, Hashemi SM (2020) On the strain-life fatigue parameters of additive manufactured plastic materials through fused filament fabrication process. Addit Manuf 32:100973. https://doi.org/10.1016/j.addma.2019.100973

    Article  Google Scholar 

  29. Chaudhry MS, Czekanski A (2020) Evaluating FDM process parameter sensitive mechanical performance of elastomers at various strain rates of loading. Materials 13:3202. https://doi.org/10.3390/ma13143202

    Article  Google Scholar 

  30. Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med 151:264–269. https://doi.org/10.7326/0003-4819-151-4-200908180-00135

    Article  Google Scholar 

  31. Wells GA, Shea B, O’Connell D, Peterson JVW, Losos M, Tugwell P (2009) The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Ottawa Hospital Research Institute, Ontario. Accessed 25 Mar 2014. http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp

  32. Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327:557–560. https://doi.org/10.1136/bmj.327.7414.557

    Article  Google Scholar 

  33. van Enst WA, Ochodo E, Scholten RJPM, Hooft L, Leeflang MM (2014) Investigation of publication bias in meta-analyses of diagnostic test accuracy: a meta-epidemiological study. BMC Med Res Methodol 14:70. https://doi.org/10.1186/1471-2288-14-70

    Article  Google Scholar 

  34. Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. Routledge

  35. Hasselblad V, Hedges LV (1995) Meta-analysis of screening and diagnostic tests. Psychol Bull 117:167–178. https://doi.org/10.1037/0033-2909.117.1.167

    Article  Google Scholar 

  36. Borenstein M, Hedges LV, Higgins JPT, Rothstein HR (2009) Converting among effect sizes. In: Introduction to meta‐analysis, pp 45–49

  37. Ning F, Cong W, Hu Y, Wang H (2017) Additive manufacturing of carbon fiber-reinforced plastic composites using fused deposition modeling: effects of process parameters on tensile properties. J Compos Mater 51:451–462. https://doi.org/10.1177/0021998316646169

    Article  Google Scholar 

  38. Rankouhi B, Javadpour S, Delfanian F, Letcher T (2016) Failure analysis and mechanical characterization of 3D printed ABS with respect to layer thickness and orientation. J Fail Anal Prev 16:467–481. https://doi.org/10.1007/s11668-016-0113-2

    Article  Google Scholar 

  39. Dou H, Cheng Y, Ye W, Zhang D, Li J, Miao Z, Rudykh S (2020) Effect of process parameters on tensile mechanical properties of 3D printing continuous carbon fiber-reinforced PLA composites. Materials. https://doi.org/10.3390/ma13173850

    Article  Google Scholar 

  40. Camposeco-Negrete C (2020) Optimization of printing parameters in fused deposition modeling for improving part quality and process sustainability. Int J Adv Manuf Syst 108:2131–2147. https://doi.org/10.1007/s00170-020-05555-9

    Article  Google Scholar 

  41. Padhi SK, Sahu RK, Mahapatra SS, Das HC, Sood AK, Patro B, Mondal AK (2017) Optimization of fused deposition modeling process parameters using a fuzzy inference system coupled with Taguchi philosophy. Adv Manuf 5:231–242. https://doi.org/10.1007/s40436-017-0187-4

    Article  Google Scholar 

  42. Keleş Ö, Blevins CW, Bowman KJ (2017) Effect of build orientation on the mechanical reliability of 3D printed ABS. Rapid Prototyp J 23:320–328. https://doi.org/10.1108/RPJ-09-2015-0122

    Article  Google Scholar 

  43. Tanoto YY, Anggono J, Siahaan IH, Budiman W (2017) The effect of orientation difference in fused deposition modeling of ABS polymer on the processing time, dimension accuracy, and strength. In: AIP conference proceedings. AIP Publishing LLC, pp 030051. https://doi.org/10.1063/1.4968304

  44. Es-Said OS, Foyos J, Noorani R, Mendelson M, Marloth R, Pregger BA (2000) Effect of layer orientation on mechanical properties of rapid prototyped samples. Mater Manuf Process 15:107–122. https://doi.org/10.1080/10426910008912976

    Article  Google Scholar 

  45. Sterne JA, Gavaghan D, Egger M (2000) Publication and related bias in meta-analysis: power of statistical tests and prevalence in the literature. J Clin Epidemiol 53:1119–1129. https://doi.org/10.1016/s0895-4356(00)00242-0

    Article  Google Scholar 

  46. Song D, Chung Baek AM, Koo J, Busogi M, Kim N (2020) Forecasting warping deformation using multivariate thermal time series and K-nearest neighbors in fused deposition modeling. Appl Sci 10:8951. https://doi.org/10.3390/app10248951

    Article  Google Scholar 

  47. Yu Y, Liu H, Qian K, Yang H, McGehee M, Gu J, Luo D, Yao L, Zhang YJ (2020) Material characterization and precise finite element analysis of fiber reinforced thermoplastic composites for 4D printing. Comput Aided Des 122:102817. https://doi.org/10.1016/j.cad.2020.102817

    Article  MathSciNet  Google Scholar 

  48. Vanaei HR, Raissi K, Deligant M, Shirinbayan M, Fitoussi J, Khelladi S, Tcharkhtchi A (2020) Toward the understanding of temperature effect on bonding strength, dimensions and geometry of 3D-printed parts. J Mater Sci 55:14677–14689. https://doi.org/10.1007/s10853-020-05057-9

    Article  Google Scholar 

  49. Sun Q, Rizvi G, Bellehumeur C, Gu P (2008) Effect of processing conditions on the bonding quality of FDM polymer filaments. Rapid Prototyp J 14:72–80. https://doi.org/10.1108/13552540810862028

    Article  Google Scholar 

  50. Wang YT, Yeh YT (2017) Effect of print angle on mechanical properties of FDM 3D structures printed with POM material. In: Bajpai R, Chandrasekhar U (eds) Innovative design and development practices in aerospace and automotive engineering. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-10-1771-1_20

    Chapter  Google Scholar 

  51. Ahn SH, Montero M, Odell D, Roundy S, Wright PK (2002) Anisotropic material properties of fused deposition modeling ABS. Rapid Prototyp J. https://doi.org/10.1108/13552540210441166

    Article  Google Scholar 

  52. Hernandez-Contreras A, Ruiz-Huerta L, Caballero-Ruiz A, Moock V, Siller HR (2020) Extended CT void analysis in FDM additive manufacturing components. Materials 13:3831. https://doi.org/10.3390/ma13173831

    Article  Google Scholar 

  53. Wickramasinghe S, Do T, Tran P (2020) FDM-based 3D printing of polymer and associated composite: a review on mechanical properties, defects and treatments. Polymers 12:1529. https://doi.org/10.3390/polym12071529

    Article  Google Scholar 

  54. Chockalingam K, Jawahar N, Praveen J (2016) Enhancement of anisotropic strength of fused deposited ABS parts by genetic algorithm. Mater Manuf Process 31:2001–2010. https://doi.org/10.1080/10426914.2015.1127949

    Article  Google Scholar 

  55. Eiliat H, Urbanic RJ (2019) Determining the relationships between the build orientation, process parameters and voids in additive manufacturing material extrusion processes. Int J Adv Manuf Syst. https://doi.org/10.1007/s00170-018-2540-6

    Article  Google Scholar 

  56. Papon EA, Haque A (2018) Tensile properties, void contents, dispersion and fracture behaviour of 3D printed carbon nanofiber reinforced composites. J Reinf Plast Compos 37:381–395. https://doi.org/10.1177/0731684417750477

    Article  Google Scholar 

  57. Dey A, Roan Eagle IN, Yodo N (2021) A review on filament materials for fused filament fabrication. J Manuf Mater Process 5:69

    Google Scholar 

  58. Lay M, Thajudin NLN, Hamid ZAA, Rusli A, Abdullah MK, Shuib RK (2019) Comparison of physical and mechanical properties of PLA, ABS and nylon 6 fabricated using fused deposition modeling and injection molding. Compos B Eng 176:107341. https://doi.org/10.1016/j.compositesb.2019.107341

    Article  Google Scholar 

  59. Muhammad Syamsuzzaman S (2013) Investigation of the effect of layer thickness and infill material percentage on the performance of low-cost and commercial fused deposition modelling, in: University of Malaya, University of Malaya. http://studentsrepo.um.edu.my/8214/5/5_COMPLETE.pdf

  60. Tymrak BM, Kreiger M, Pearce JM (2014) Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions. Mater Des 58:242–246. https://doi.org/10.1016/j.matdes.2014.02.038

    Article  Google Scholar 

  61. Wang X, Zhao L, Fuh JYH, Lee HP (2019) Effect of porosity on mechanical properties of 3D printed polymers: experiments and micromechanical modeling based on X-ray computed tomography analysis. Polymers 11:1154. https://doi.org/10.3390/polym11071154

    Article  Google Scholar 

  62. Mohamed OA, Masood SH, Bhowmik JL (2016) Mathematical modeling and FDM process parameters optimization using response surface methodology based on Q-optimal design. Appl Math Model 40:10052–10073. https://doi.org/10.1016/j.apm.2016.06.055

    Article  MATH  Google Scholar 

  63. Deswal S, Narang R, Chhabra D (2019) Modeling and parametric optimization of FDM 3D printing process using hybrid techniques for enhancing dimensional preciseness. Int J Interact Des Manuf IJIDeM 13:1197–1214. https://doi.org/10.1007/s12008-019-00536-z

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank Deputy of Research and Technology, Hamadan University of Medical Sciences for its support for the current work (IR.UMSHA.REC.1399.953).

Funding

This work was funded by Hamadan University of Medical Science, Hamadan, Iran (Grant No. 140006305305).

Author information

Authors and Affiliations

Authors

Contributions

SF and FV reviewed the literature, performed the analyses and wrote the manuscript. SF revised the manuscript.

Corresponding authors

Correspondence to Sajjad Farashi or Fariborz Vafaee.

Ethics declarations

Conflict of interest

There is nothing to declare.

Statements of ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farashi, S., Vafaee, F. Effect of printing parameters on the tensile strength of FDM 3D samples: a meta-analysis focusing on layer thickness and sample orientation. Prog Addit Manuf 7, 565–582 (2022). https://doi.org/10.1007/s40964-021-00247-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40964-021-00247-6

Keywords

Navigation