Skip to main content
Log in

On the processability and mechanical behavior of Al–Mg–Sc alloy for PBF-LB

  • Full Research Article
  • Published:
Progress in Additive Manufacturing Aims and scope Submit manuscript

Abstract

The use of Al–Mg–Sc alloys has experienced a remarkable increase for the additive manufacturing industry, especially in aerospace. Al–Mg–Sc shows an outstanding behavior with much higher mechanical performance in both static and fatigue with respect to other alloys for powder bed fusion laser-based (PBF-LB) process like AlSi10Mg or AlSi7Mg. Alloy composition in commercially powder suppliers has been modified from that available in 2013 to a new version in 2017, and, therefore, further information on its processability and performance is still required. Furthermore, the mechanical behavior after different post-processes needs to be analyzed to set the best combination of e.g. thermal treatments and surface finishing qualities. This paper reports on the mechanical behavior of Al–Mg–Sc PBF-LB alloy. Its processability is demonstrated by the development of a design of experiments campaign for achieving the best processing parameters. Samples for static and fatigue tests have been manufactured, which have been subjected to stress relieve treatments or hot isostatic pressing, but also with different surface qualities (machined or sand blasted). Finally, the influence on the mechanical static properties in the alloy with respect to the building position has been investigated and related to the argon flow direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Murat Kusoglu I, Gökce B, Barcikowski S (2020) Addit Manuf 36:101489

    Google Scholar 

  2. Murray JL, McAlister AJ (1984) Bull All Ph Dia 5:74

    Article  Google Scholar 

  3. Tavitas-Medrano FJ, Mohamed AMA, Gruzleski JE (2010) J Mater Sci 45:641

    Article  Google Scholar 

  4. Sui Y, Ji D, Han L (2019) JOM 71:366

    Article  Google Scholar 

  5. Lasagni F, Lasagni A, Marks E, Holzapfel C, Mücklich F, Degischer HP (2007) Acta Mater 55(11):3875

    Article  Google Scholar 

  6. Hunsicker HY (1976) Philos Trans R Soc Lond Ser A 282(1307):359

    Article  Google Scholar 

  7. Filatov YA, Yelagin VI, Zakharov VV (2000) Mater Sci Eng A 280(1):97

    Article  Google Scholar 

  8. Glerum JA, Kenel C, Sun T, Dunand DC (2020) Addit Manuf 36:101461

    Google Scholar 

  9. Palm F, Leuschner R, Schubert T, Kieback B (2010) In: PM2010 World congress—PM aluminium and magnesium, p 2

  10. Griffiths S, Rossell MD, Croteau J, Vo NQ, Dunand DC, Leinenbach C (2018) Mater Charact 143:34

    Article  Google Scholar 

  11. Sher D (2020) "The FIA adds Scalmalloy to the list of approved additive materials for F1" 3D printing media network. https://www.3dprintingmedia.network/the-fia-now-officially-includes-scalmalloy-on-the-list-of-approved-additive-materials-for-formula-1/

  12. Lasagni F, Periñán A, Hernández L, Galleguillos C, Santaolaya J, Hervás D, Venegas P, Gumpinger J, Garcia-Cosio M (2020) In: MSE 2020 conference

  13. Periñán A (2017) Internal Report CATEC

  14. Dorin T, Ramajayam M, Babaniaris S, Langan TJ (2019) Mater Charact 154:353

    Article  Google Scholar 

  15. Spierings AB, Dawson K, Heeling T, Uggowitzer PJ, Schäublin R, Palm F, Wegener K (2017) Mater Des 115:52

    Article  Google Scholar 

  16. Begoc S, Montedron F, Pommata G, Leger G, Gas M, Eyrignous S (2019) In: 8th EUCASS, 2019, p 677

  17. Lasagni F, Abellán JM, Periñán A, de la Cruz JC, Galleguillos C, Santaolaya J, González S, Hernández A, Jiménez-Gahete AE, Martin JC (2019) WerkstoffWoche 2019

  18. Aversa A, Marchese G, Saboori A, Bassini E, Manfredi D, Biamino S (2019) Materials 12:1007

    Article  Google Scholar 

  19. Cooke S, Ahmadi K, Willerth S, Herring R (2020) J Manuf Process 57:978

    Article  Google Scholar 

  20. Dunbar A, Denlinger E, Heigel J, Michaleris P, Guerrier P, Martukanitz R, Simpson TW (2016) Addit Manuf 12:25

    Google Scholar 

  21. Denlinger ER, Gouge M, Irwin J, Michaleris P (2017) Addit Manuf 16:73

    Google Scholar 

  22. Schmidt M, Merklein M, Bourell D, Dimitrov D, Hausotte T, Wegener K, Overmeyer L, Vollertsen F, Levy GN (2017) CIRP Ann Man Technol 66:561

    Article  Google Scholar 

  23. Barrentine LB "An Introduction to Design of Experiments, a simplified approach" (1999) ASQ Quality Press, Winsconsin

  24. Berrocal L, Fernández R, González S, Periñán A, Vilanova J, Martín JM, Guerrero JM, Lasagni F (2015) In: Proceedings AMPT 2015

  25. Rasband W (1997) Image processing and analysis in Java, National Institutes of Health

  26. (2019) Non-destructive testing—radiation methods for computed tomography; part 3: operation and interpretation. BS EN ISO 15708 3

  27. (2020) Space product assurance: processing and quality assurance requirements for metallic powder bed fusion technologies for space applications. ECSS-Q-ST-70-80C DRAFT. The European Space Agency

  28. Herrera-García M, Galleguillos C, Periñán A, Martín J, Navarro C, Domínguez J, Lasagni F (2019) Trater Press 70:27

    Google Scholar 

  29. Li R, Chen H, Zhu H, Wang M, Chen C, Yuan T (2019) Mater Des 168:107668

    Article  Google Scholar 

  30. Palm F, Schmidtke K (2012) In: Proceedings of the 9th international conference trends in welding research

  31. Cordova L, Bor T, de Smit M, Carmignato S, Campos M, Tinga T (2020). Addit Manuf. https://doi.org/10.1016/j.addma.2020.101625

    Article  Google Scholar 

  32. Schmidtke K, Palm F, Hawkins A, Emmelmann C (2011) Phys Procedia 12:369

    Article  Google Scholar 

  33. Koutny D, Skulina D, Pantelejev L, Palousek D, Lenczowski B, Palm F, Nick A (2018) Procedia CIRP 74:44

    Article  Google Scholar 

  34. Philo A, Lavery NP, Brown SGR, Cherry J, Sienz J, Joannou J, Sutcliffe CJ (2015) In: Proceedings of 23rd UK conference of the association for computational mechanics in engineering

  35. Ferrar B, Mullena L, Jones E, Stamp R, Sutcliffe CJ (2012) J Mater Process Technol 212:355

    Article  Google Scholar 

  36. Hauser C, Childs THC, Dalgarno KW, Eane RB (1999) In: Proceedings of 10th SFFS, p 265–272

  37. Das S (2001) In: Proceedings of 12th SFFS, p 94

  38. Schneller W, Leitner M, Leuders S, Sprauel JM, Grün F, Pfeifer T, Jantschner O (2020). Addit Manuf. https://doi.org/10.1016/j.addma.2020.101688

    Article  Google Scholar 

  39. Denti L, Sola A (2019) Metals 9(12):1284

    Article  Google Scholar 

  40. Gumpinger J, Ngan I, Escolar D, Butenko Y, Brieva A, Portaluppi M, Rohr T, Blanco M, Esteban M, Hernández L, Cosio MG, Periñán-Butrón A, Galleguillos C, Lasagni F (2020) Proc ICAM

Download references

Acknowledgements

Authors would also like to acknowledge the CDTI and the Spanish Ministry of Science and Innovation for the funding received for the CEFAM Project under the Awarding and funding program for Excellent Technology Centers “Cervera” (CER 20191005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Lasagni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lasagni, F., Galleguillos, C., Herrera, M. et al. On the processability and mechanical behavior of Al–Mg–Sc alloy for PBF-LB. Prog Addit Manuf 7, 29–39 (2022). https://doi.org/10.1007/s40964-021-00216-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40964-021-00216-z

Keywords

Navigation