Skip to main content
Log in

Skeleton-based perpendicularly scanning: a new scanning strategy for additive manufacturing, modeling and optimization

  • Full Research Article
  • Published:
Progress in Additive Manufacturing Aims and scope Submit manuscript

Abstract

Actually, additive manufacturing (AM) is considered as a major class of complex parts manufacturing technologies. Including a wide range of materials, a huge set of physico-chemical phenomena are involved and adapted to control and master the variety of materials processing. On the other side, AM still knows a low productivity rate, due to different reasons that are mainly related to the material-process interaction control. In this paper, the authors propose a novel 2D scanning strategy that could be adapted to AM processes such as Laser Beam Powder Bed Fusion of Metals (PBF-LB/M) and polymers (PBF-LB/P), Electron Beam Powder Bed Fusion for metals (PBF-EB/M), and Material Extrusion-based (MEx) (ISO/ASTM 52,900 standards). The novelty presented corresponds to a Skeleton Based Perpendicularly (SBP) scanning strategy that aims to reduce the scanning lengths, and thus the production time and processing energy. The competitiveness of the new technique is mainly discussed according to the hatch space distance and the dimensions of a rectangular shape that was selected for the proof of concept of this new scanning strategy. In other words, it is proposed to investigate the competitiveness of the new scanning technique compared to four classical scanning strategies that are widely used in AM in term of process productivity. A detailed benchmark analysis has been applied to the following strategies: chess, stripe, spiral, and contour scanning. An analytical mathematical modeling was developed leading to the evaluation of the performance of SBP scanning compared to the scanning benchmark strategies by means of two proposed geometrical indices: the “gain of length” and the “specific gain of length per surface unit”. These were exploited in two separate study cases. The simulation showed that the SBP scanning length exhibits an increasing quadratic dependence on rectangle dimensions and a decreasing hyperbolic behavior according to hatch space distance. The lengths of the benchmark scanning strategies also presented a hyperbolic decreasing behavior according to hatch space distance. After that, it was proved that the SBP strategy is absolutely competitive compared to chess and stripe scanning; the competitiveness fluctuates around 95%, but it is highly concentrated around 100%. Otherwise, for the contour and stripe strategies, it has been shown that the competitiveness is strongly affected by the hatch space distance and by the dimensions of the shape being scanned. A particular behavior of the feasibility percentage of decision variable combinations, was detected as power laws or polynomials of the hatch space distance in the case of SBP/spiral comparison. In this case, the competitiveness (feasibility) ranged from 20 to 98% while it ranged from 0 to 75% in the case of SBP/contour comparison. The results of this study could also constitute a major contribution to related scientific and technical fields concerned with optimal area or volume control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Availability of data and material

No external data were used in this paper.

References

  1. https://wohlersassociates.com/press82.html. Accessed 28 Mar 2020.

  2. Knofius N, Van der Heijden MC, Zijm WHM (2018) Consolidating spare parts for asset maintenance with additive manufacturing. Int J Prod Econ 208:269–280. https://doi.org/10.1016/j.ijpe.2018.11.007

    Article  Google Scholar 

  3. RaviPrakash M, Naga SC (2019) Additive manufacturing technology empowered complex electromechanical energy conversion devices and transformers. Appl Mater Today 14:35–50. https://doi.org/10.1016/j.apmt.2018.11.004

    Article  Google Scholar 

  4. Yung KC, Xiao TY, Choy HS, Wanga WJ, Cai ZX (2018) Laser polishing of additive manufactured CoCr alloy components with complex surface geometry. J Mater Process Technol 262:53–64. https://doi.org/10.1016/j.jmatprotec.2018.06.019

    Article  Google Scholar 

  5. M Jai El 2020 Mathematical design and preliminary mechanical analysis of the new lattice structure: “GE-SEZ*” structure processed by ABS polymer and FDM technology Prog Addit Manuf https://doi.org/10.1007/s40964-020-00148-0

    Article  Google Scholar 

  6. W-J Long 2019 Rheology and buildability of sustainable cement-based composites containing micro-crystalline cellulose for 3D-printing J Cleaner Prod 239 2019 118054 https://doi.org/10.1016/j.jclepro.2019.118054

    Article  Google Scholar 

  7. M Chen 2020 Rheological parameters and building time of 3D printing sulphoaluminate cement paste modified by retarder and diatomite Const Build Mater 234 117391 https://doi.org/10.1016/j.conbuildmat.2019.117391

    Article  Google Scholar 

  8. D Lowke 2020 Particle bed 3D printing by selective cement activation—applications material and process technology Cem Concr Res 134 106077 https://doi.org/10.1016/j.cemconres.2020.106077

    Article  Google Scholar 

  9. A Perrot 2019 Structural built-up of cement-based materials used for 3D-printing extrusion techniques Mater Struct 49 1213 1220 https://doi.org/10.1617/s11527-015-0571-0

    Article  Google Scholar 

  10. RA Buswell WR Leal de Silva SZ Jones J Dirrenberger 2018 3D printing using concrete extrusion: a roadmap for research Cem Con Res 112 37 49 https://doi.org/10.1016/j.cemconres.2018.05.006

    Article  Google Scholar 

  11. TP Ribeiro LFA Bernardo JMA Andrade 2021 Topology optimisation in structural steel design for additive manufacturing Appl Sci 11 5 2112 https://doi.org/10.3390/app11052112

    Article  Google Scholar 

  12. R Goutham TR Veena Babagowda KR Srinivasa Prasad 2018 Study on mechanical properties of recycled Acrylonitrile Butadiene Styrene (ABS) blended with virgin Acrylonitrile Butadiene Styrene (ABS) using Taguchi method Mater Today 5 24836 24845

    Google Scholar 

  13. T Mishurova K Artzt J Haubrich 2018 New aspects about the search for the most relevant parameters optimizing SLM materials Addit Manuf https://doi.org/10.1016/j.addma.2018.11.023

    Article  Google Scholar 

  14. A Alafaghani A Qattawi 2018 Investigating the effect of fused deposition modeling processing parameters using Taguchi design of experiment method J Manuf Proc 36 164 174 https://doi.org/10.1016/j.jmapro.2018.09.025

    Article  Google Scholar 

  15. M Yakout MA Elbestawi SC Veldhuis 2018 A study of thermal expansion coefficients and microstructure during selective laser melting of Invar 36 and stainless steel 316L Addit Manuf https://doi.org/10.1016/j.addma.2018.09.035

    Article  Google Scholar 

  16. Zhang Z, Chu B, Wang L, Lu Z (2019) Comprehensive effects of placement orientation and scanning angle on mechanical properties and behavior of 316L stainless steel based on the selective laser melting process. J Alloys Comp. https://doi.org/10.1016/j.jallcom.2019.03.082

    Article  Google Scholar 

  17. R Munprom S Limtasiri 2017 Optimization of stereolithographic 3D printing parameters using Taguchi method for improvement in mechanical properties Mater Today 17 2019 1768 1773

    Google Scholar 

  18. G Dong 2018 Optimizing process parameters of fused deposition modeling by Taguchi method for the fabrication of lattice structures Addit Manuf 19 62 72 https://doi.org/10.1016/j.addma.2017.11.004

    Article  Google Scholar 

  19. Wankhede, V., Jagetiya, D., Joshi, A. and Chaudhari, R. (2019). Experimental investigation of FDM process parameters using Taguchi analysis. Mater Today Proc., 1–4.

  20. S Kumar 2014 Selective laser sintering/melting Compr Mater Proc 10 93 134 https://doi.org/10.1016/b978-0-08-096532-1.01003-7 Elsevier

    Article  Google Scholar 

  21. VS Sufiiarov 2016 The effect of layer thickness at selective laser melting. 2016 Global Congress on Manufacturing and Management Proced Eng 174 126 134

    Article  Google Scholar 

  22. QB Nguyen 2018 The role of powder layer thickness on the quality of SLM printed parts Arch Civ Mech Eng 18 948 955 https://doi.org/10.1016/j.acme.2018.01.015

    Article  Google Scholar 

  23. Aboulkhair NT, Simonelli M, Parry L, Ashcroft I, Tuck C, Hague R (2019) 3D printing of aluminum alloys: additive manufacturing of aluminum alloys using selective laser melting. Prog Mater Sci 106:100578

    Article  Google Scholar 

  24. A Zykova S Nikonov 2020 Process control features of electron-beam additive manufacturing of austenitic stainless steel Proc Str Integ 30 216 223 https://doi.org/10.1016/j.prostr.2020.12.033

    Article  Google Scholar 

  25. R Feng X Li L Zhu A Thakur X Wei 2021 An improved two-level support structure for extrusion-based additive manufacturing Rob Comp Integr Man 67 2021 101972 https://doi.org/10.1016/j.rcim.2020.101972

    Article  Google Scholar 

  26. M Schmitt M Bösele G Schlick G Reinhart 2020 Influence of support structures on the microstructure and mechanical properties of case hardening steel in laser powder bed fusion MIC Procedia https://doi.org/10.2139/ssrn.3724368

    Article  Google Scholar 

  27. Järvinen J-P et al (2014) Characterization of effect of support structures in laser additive manufacturing of stainless steel. 8th International conference on photonic technologies LANE 2014. Phys Proc 56:72–81

    Article  Google Scholar 

  28. J Jiang X Xu J Stringer 2018 Support structures for additive manufacturing: a review J Manuf Mater Process 2 64 https://doi.org/10.3390/jmmp2040064

    Article  Google Scholar 

  29. Deev AA, Kuznetcov PA, Petrov SN (2016) Anisotropy of mechanical properties and its correslatin with structure of the stainless steel 316L produced by the SLM method. 9th International Conference on Photonic Technologies—LANE 2016. Phy Proc 83:789–796

    Article  Google Scholar 

  30. E Liverani 2017 Effect of Selective Laser Melting (SLM) process parameters on microstructure and mechanical properties of 316L austenitic stainless steel J Mater Process Technol https://doi.org/10.1016/j.jmatprotec.2017.05.042

    Article  Google Scholar 

  31. MS Duval-Chaneac 2018 Experimental study on finishing of internal laser melting (SLM) surface with abrasive flow machining (AFM) Precis Eng https://doi.org/10.1016/j.precisioneng.2018.03.006

    Article  Google Scholar 

  32. Mugwagwa, L. et al. (2017). Influence of process parameters on residual stress related distortions in selective laser melting. 15th Global Conference on Sustainable Manufacturing, Proc Manuf, 21, 92–99.

  33. S Roux Le M Salem A Hor 2018 Improvement of the bridge curvature method to assess residual stresses in selective laser melting Addit Manuf 22 320 329 https://doi.org/10.1016/j.addma.2018.05.025

    Article  Google Scholar 

  34. AB Spierings TL Starr K Wegener 2013 Fatigue performance of additive manufactured metallic parts Rapid Prototyp J 19 2 88 94 https://doi.org/10.1108/13552541311302932]

    Article  Google Scholar 

  35. S Leuders 2014 On the fatigue properties of metals manufactured by selective laser melting—the role of ductility J Mater Res https://doi.org/10.1557/jmr.2014.157

    Article  Google Scholar 

  36. C Elangeswaran 2019 Effect of post-treatments on the fatigue behavior of 316L stainless steel manufactured by laser powder bed fusion Int J Fatigue https://doi.org/10.1016/j.ijfatigue.2019.01.013

    Article  Google Scholar 

  37. ML Pace 2017 3D additive manufactured 316L components microstructural features and changes induced by working life cycles Appl Surf Sci https://doi.org/10.1016/j.apsusc.2017.01.308

    Article  Google Scholar 

  38. Q Chao 2017 On the enhanced corrosion resistance of a selective laser melted austenitic stainless steel Scripta Mater 141 2017 94 98 https://doi.org/10.1016/j.scriptamat.2017.07.037

    Article  Google Scholar 

  39. EO Olakanmi RF Cochrane KW Dalgarno 2015 A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: processing, microstructure, and properties Prog Mater Sci 74 401 477 https://doi.org/10.1016/j.pmatsci.2015.03.002

    Article  Google Scholar 

  40. M Ma Z Wang X Zeng 2016 A comparison on metallurgical behaviors of 316L stainless steel by selective laser melting and laser cladding deposition Mater Sci Eng A https://doi.org/10.1016/j.msea.2016.12.112

    Article  Google Scholar 

  41. M Yakout MA Elbestawi SC Veldhuis 2018 Density and mechanical properties in selective laser melting of Invar 36 and stainless steel 316L J Mater Process Technol https://doi.org/10.1016/j.jmatprotec.2018.11.006

    Article  Google Scholar 

  42. Pitassi D et al (2018) Finite element thermal analysis of metal parts additively manufactured via selective laser melting. In: Răzvan P (ed) Finite element method: simulation, numerical analysis and solution technique. IntechOpen, pp 123–156

    Google Scholar 

  43. J Suryawanshi KG Prashanth U Ramamurty 2017 Mechanical behavior of selective laser melted 316L stainless steel Mater Sci Eng A 696 113 121 https://doi.org/10.1016/j.msea.2017.04.058

    Article  Google Scholar 

  44. J Damon S Dietrich 2019 Process porosity and mechanical performance of fused filament fabricated 316L stainless steel Rapid Prot J 25 7 1319 1327 https://doi.org/10.1108/RPJ-01-2019-0002

    Article  Google Scholar 

  45. A Kudzal 2017 Effect of scan pattern on the microstructure and mechanical properties of Powder Bed Fusion additive manufactured 17–4 stainless steel Mater Design 133 205 215 https://doi.org/10.1016/j.matdes.2017.07.047

    Article  Google Scholar 

  46. S Catchpole-Smith 2017 Fractal scan strategies for selective laser melting of ‘unweldable’ nickel superalloys Add Man 15 113 122 https://doi.org/10.1016/j.addma.2017.02.002

    Article  Google Scholar 

  47. D Gu H Chen 2018 Selective laser melting of high strength and toughness stainless steel parts: the roles of laser hatch style and part placement strategy Mater Sci Eng A https://doi.org/10.1016/j.msea.2018.04.046

    Article  Google Scholar 

  48. EO Olakanmi RF Cochrane KW Dalgarno 2011 Densification mechanism and microstructural evolution in selective laser sintering of Al–12Si powders J Mater Process Technol 211 113 121 https://doi.org/10.1016/j.jmatprotec.2010.09.003

    Article  Google Scholar 

  49. H Gong 2015 Influence of defects on mechanical properties of Ti–6Al–4 V components produced by selective laser melting and electron beam melting Mater Design 86 545 554 https://doi.org/10.1016/j.matdes.2015.07.147

    Article  Google Scholar 

  50. Koch et al. (2017), Investigation of Mechanical Anisotropy of the Fused Filament Fabrication Process via Customized Tool Path Generation, Add Man. (FFF Experiments) http://dx.doi.org/https://doi.org/10.1016/j.addma.2017.06.003

  51. G Gomez-Gras R Jerez-Mesa 2018 Fatigue performance of fused filament fabrication PLA specimens Mater Design 140 278 285 https://doi.org/10.1016/j.matdes.2017.11.072

    Article  Google Scholar 

  52. QB Nguyen 2018 High mechanical strengths and ductility of stainless steel 304L fabricated using selective laser melting J Mater Sci Technol 35 2 388 394 https://doi.org/10.1016/j.jmst.2018.10.013

    Article  Google Scholar 

  53. E Soylemez E Koç M Coşkun 2019 Thermo-mechanical simulations of selective laser melting for AlSi10Mg alloy to predict the part-scale deformations Prog Addit Manuf 4 465 478 https://doi.org/10.1007/s40964-019-00096-4

    Article  Google Scholar 

  54. Y Lu 2015 Study on the microstructure, mechanical property and residual stress of SLM Inconel-718 alloy manufactured by differing island scanning strategy Opt Laser Technol 75 2015 197 206 https://doi.org/10.1016/j.optlastec.2015.07.009

    Article  Google Scholar 

  55. Easterling, K., Introduction to the Physical Metallurgy of Welding (1992). Butterworth-Heinemann, 2nd Edition, Great Britain.

  56. C Wu S Li C Zhang X Wang 2015 Microstructural evolution in 316LN austenitic stainless steel during solidification process under different cooling rates J Mater Sci (2016) 51 2529 2539 https://doi.org/10.1007/s10853-015-9565-0

    Article  Google Scholar 

  57. S-H Sun 2019 Excellent mechanical and corrosion properties of austenitic stainless steel with a unique crystallographic lamellar microstructure via selective laser melting Scripta Mater 159 89 93 https://doi.org/10.1016/j.scriptamat.2018.09.017

    Article  Google Scholar 

  58. M Rappaz C-A Gandin 1993 Probabilistic modelling of microstructure formation in solidification processes Acta Metall Mater 41 2 345 360

    Article  Google Scholar 

  59. HL Wei 2020 Mechanistic models for additive manufacturing of metallic components Prog Mat Sc 116 100703 https://doi.org/10.1016/j.pmatsci.2020.100703

    Article  Google Scholar 

  60. MF Zah S Lutzmann 2010 Modelling and simulation of electron beam melting Prod Eng Res Dev 4 15 23 https://doi.org/10.1007/s11740-009-0197-6

    Article  Google Scholar 

  61. Padilha, A. F. and Rios, P. R. (2002). Decomposition of Austenite in Austenitic Stainless Steels. ISIJ International, Vol. 42 (2002), No. 4, pp. 325–337.

  62. J-C Lippold D-J Kotecki 2005 Welding metallurgy and weldability of stainless steels Whilet-Interscience Publication New Jersey

    Google Scholar 

  63. D Kong 2018 Heat treatment effect on the microstructure and corrosion behavior of 316L stainless steel fabricated by selective laser melting for proton exchange membrane fuel cells Electrochim Acta https://doi.org/10.1016/j.electacta.2018.04.188

    Article  Google Scholar 

  64. F Yan 2018 Characterization of nano-scale oxides in austenitic stainless steel processed by powder bed fusion Scripta Mat 155 104 108 https://doi.org/10.1016/j.scriptamat.2018.06.011

    Article  Google Scholar 

  65. D Kong 2019 Anisotropy in the microstructure and mechanical property for the bulk and porous 316L stainless steel fabricated via selective laser melting Mat Lett 235 1 5 https://doi.org/10.1016/j.matlet.2018.09.152

    Article  Google Scholar 

  66. KG Prashanth S Scudino HJ Klauss KB Surreddi L Löber Z Wang AK Chaubey U Kühn J Eckert 2014 Microstructure and mechanical properties of Al-12Si produced by selective laser melting: effect of heat treatment Mater Sci Eng A 590 153 160

    Article  Google Scholar 

  67. MM Mbow PR Marin F Pourroy 2020 Extruded diameter dependence on temperature and velocity in the fused deposition modeling process Prog Addit Manuf 5 139 152 https://doi.org/10.1007/s40964-019-00107-4

    Article  Google Scholar 

  68. Felkel P, Obderzalek S (1998) Straight skeleton implementation. Reprinted proceedings of spring conference on computer graphics 210–218. Budmerice, Slovakia

    Google Scholar 

  69. C Rousseau 2001 Mathematiques and technologie, SUMAT Springer

    Google Scholar 

  70. QJ Wu JD Bourland 1999 A Morphology-guided radiosurgery treatment planning and optimization for multiple isocenters Medic Phy 26 2151 2160.3

    Article  Google Scholar 

  71. QJ Wu 2000 Sphere packing using morphological analysis DIMACS Ser Discr Math Theor Comput Sci 55 45 54

    Article  MathSciNet  Google Scholar 

  72. Attali D (1995) Squelettes et graphes de Voronoi 2D et 3D. PhD thesis. Joseph Fourier University, Grenoble I, France

  73. H Blum 1967 A transformation for extracting new descriptors of shape Model Percept Speech Vis Form 19 5 362 380

    Google Scholar 

  74. C Kamath 2014 Density of additively manufactured, 316L SS parts using laser powder-bed fusion at powers up to 400 W Int J Adv Manuf Technol 74 65 78 https://doi.org/10.1007/s00170-014-5954-9

    Article  Google Scholar 

  75. Saha PK, Borgefors G, di Baja GS (2017) Chapter 1—Skeletonization and its applications—a review, Skeletonization. Academic Press, pp 3–42. https://doi.org/10.1016/B978-0-08-101291-8.00002-X

    Book  Google Scholar 

  76. DM Andreyevna 2015 Determination of true temperature in selective laser melting of metal powder using infrared camera Mater Sci Forum 834 95 104 https://doi.org/10.4028/www.scientific.net/MSF.834.95

    Article  Google Scholar 

  77. B Spain 1963 Analytical geometry. 1st edition Pergamon https://doi.org/10.1016/C2013-0-05308-X

    Article  MATH  Google Scholar 

Download references

Funding

No funding was provided for this research.

Author information

Authors and Affiliations

Authors

Contributions

MEJ developed the approach, carried out the analytical modeling, the implementation of the code, the discussion and interpretation of the results. IA contributed to the discussion on the material science aspect, the choice of processing parameters to be adopted, and the constraining of the optimization problem formulation in term of hatch space distance. NS initiated the discussion on the proposal of a new scanning technique based on the notion of 2D shape skeleton generation.

Corresponding author

Correspondence to Mostapha El Jai.

Ethics declarations

Conflict of interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix I: SBP scanning modeling

1.1 A. Study of the area (A)

1.1.1 a. Bisectors parametrization

According to Spain 1963 [77], the coordinates of the point H which is the projection of the point C onto the bisector (B) can be calculated from the point C coordinates and the carrier vector \(\overrightarrow{v}\) of the line (B), as shown in Fig. 7.

Since

$$\left\{\begin{array}{c}H\in \left(B\right)\\ \left(B\right): f\left(x,y\right)=ax-y+b=0 .\end{array}\right.$$
(51)

Then

$$a{x}_{H}-{y}_{H}+b=0.$$
(52)

1.1.2 b. Expression of the distance \({{d}}_{\overrightarrow{{C}{H}}/{A}}\)

This section is developed according to the results of Sect. 3.1.1.1.

For the calculation of the distance \({d}_{\overrightarrow{CH}/A}=||\overrightarrow{CH}||\), the Cartesian distance is utilized according to the coordinates of the point \(C\left({x}_{C}, {y}_{C}\right)\) and \(H\left({x}_{H}, {y}_{H}\right)\), where:

$${d}_{\overrightarrow{CH}/A}=||\overrightarrow{CH}||=\sqrt{{\left({x}_{H}-{x}_{C}\right)}^{2}+{\left({y}_{H}-{y}_{C}\right)}^{2}}.$$

Since

$$\left\{C\right\}=\left(CH\right)\cap \left(D\right),$$

and

$$\left(D\right):y={L}_{2}/2,$$

thus

$${y}_{C}={L}_{2}/2.$$
(53)

The vector \(\overrightarrow{n}\) which is normal to the bisector (B) is expressed by the following coordinates [54]:

$$\overrightarrow{n}=\overrightarrow{\nabla }f\left(x,y\right)=\left\{\begin{array}{c}{n}_{x}=\frac{a}{\sqrt{1+{a}^{2}}}\\ {n}_{y}=\frac{-1}{\sqrt{1+{a}^{2}}}\end{array}\right..$$
(54)

where f is the implicit function that defines the bisector (B) as described in Eq. (51).

To express the \({x}_{c}\) coordinate, we need to determine the equation of the line (CH).

Since the line (CH) is carried by the vector \(\overrightarrow{n}\):

$$\left(CH\right):\;\frac{-1}{\sqrt{1+{a}^{2}}}x-\frac{a}{\sqrt{1+{a}^{2}}}y+\mathrm{C}\mathrm{s}\mathrm{t}=0.$$
(55)

The constant “Cst” could be calculated according to the point H which belongs to the line (CH).

Replacing the coordinates of point H in Eq. (51), we obtain:

$$\frac{-1}{\sqrt{1+{a}^{2}}}{x}_{H}-\frac{a}{\sqrt{1+{a}^{2}}}{y}_{H}+\mathrm{C}\mathrm{s}\mathrm{t}=0.$$

where

$$\begin{aligned} & \left(13\right)\;\;\iff \;\;{y}_{H}=a\;{x}_{H}+b\\ & \quad \Rightarrow \;\;\frac{-1}{\sqrt{1+{a}^{2}}}{x}_{H}-\frac{a}{\sqrt{1+{a}^{2}}}\left(a\;{x}_{H}+b\right)+\mathrm{C}\mathrm{s}\mathrm{t}=0 \\ & \quad \Rightarrow \;\mathrm{C}\mathrm{s}\mathrm{t}=\frac{{x}_{H}\left(1+{a}^{2}\right)+ab}{\sqrt{1+a^2}}. \end{aligned}$$

So the equation of the line (CH) becomes:

$$\left(CH\right):\;\frac{-1}{\sqrt{1+{a}^{2}}}x-\frac{a}{\sqrt{1+{a}^{2}}}y+\frac{{x}_{H}\left(1+{a}^{2}\right)+ab}{\sqrt{1+{a}^{2}}}=0.$$

Since \(\forall a\in \mathbb{R}\)

$$\sqrt{\left(1+{a}^{2}\right)}\ne 0.$$

We find

$$\left(CH\right):\;x+ay-\left({x}_{H}\left(1+{a}^{2}\right)+ab\right)=0.$$
(56)

Since \(C\in \left(CH\right):\)

$${x}_{C}+a{y}_{C}-\left({x}_{H}\left(1+{a}^{2}\right)+ab\right)=0.$$

According to the expression (53):

$$\Rightarrow {x}_{C}+\frac{a{L}_{2}}{2}-\left({x}_{H}\left(1+{a}^{2}\right)+ab\right)=0.$$

Finally

$${x}_{C}-{x}_{H}=a\left(a\;{x}_{H}+b-\frac{{L}_{2}}{2}\right),$$
(57)
$${y}_{C}-{y}_{H}=-\left(a{x}_{H}+b-\frac{{L}_{2}}{2}\right).$$
(58)

In addition to the Eqs. (57) and (58), we remark that:

$${x}_{C}-{x}_{H}=-a\left({y}_{C}-{y}_{H}\right).$$
(59)

Or

$${y}_{C}-{y}_{H}=-\frac{1}{a}\left({x}_{C}-{x}_{H}\right).$$
(60)

Thus:

$$\begin{aligned} &{d}_{\overrightarrow{CH}/A}=||\overrightarrow{CH}||=\sqrt{{a}^{2}{\left({y}_{H}-{y}_{C}\right)}^{2}+{\left({y}_{H}-{y}_{C}\right)}^{2}} \\ & \quad \Rightarrow {d}_{\overrightarrow{CH}/A}=\left|{y}_{H}-{y}_{C}\right|\sqrt{1+{a}^{2}}.\end{aligned}$$

Since

$${y}_{H}\le {y}_{C}\Rightarrow \left|{y}_{H}-{y}_{C}\right|={y}_{C}-{y}_{H}.$$

Hence

$${d}_{\overrightarrow{CH}/A}=||\overrightarrow{CH}||=-a{x}_{H}\sqrt{1+{a}^{2}}\;.$$
(61)

1.1.3 c. Expression of the command parameter \({{x}}_{{H}}\)

Let xH be the command scanning variable. To apply the jumps of the scanning, xH must be considered as a discrete parameter. Thus xH must be expressed according to the projection jump step on the \(\overrightarrow{x}\) axis.

The jump along the bisector (B) is denoted \({e}_{s}\), its projection, perpendicularly to the skeleton, on the horizontal axis is denoted \({e}_{s}^{{'}}\) (Fig. 8).

So, the formulation of xH is given by in the expression (62).

$${x}_{H}=k {e}_{s}^{{'}} .$$
(62)

The geometrical link between \({e}_{s}\) and \({e}_{s}^{{'}}\) is described by the Fig. 22.

Fig. 22
figure 22

Relation between \({e}_{s}\) and \(e{\mathrm{'}}_{s}\)

Thus

$$\begin{array}{c}(\text{fig. } 9)\Rightarrow \mathrm{cos}\left(\theta \right)={e}_{s}/{e}_{s}^{{{'}}}\\ (\text{fig. } 6)\Rightarrow \left\{\begin{array}{c}\cos\left(\theta \right)={\alpha }_{1}{L}_{1}/ \Lambda\\ \Lambda =\sqrt{{\left({\alpha }_{1}{L}_{1}\right)}^{2}+{\left(\frac{{L}_{2}}{2}\right)}^{2}}\end{array}\right.\end{array}.$$
(63)

It implies that:

$${e}_{s}^{{{'}}}=\frac{{e}_{s}\Lambda }{{\alpha }_{1}{L}_{1}}=\frac{{e}_{s}}{{\alpha }_{1}{L}_{1}}\sqrt{{\left({\alpha }_{1}{L}_{1}\right)}^{2}+{\left(\frac{{L}_{2}}{2}\right)}^{2}}.$$

Finally

$${e}_{s}^{{{'}}}={e}_{s}\sqrt{1+{\left(\frac{{L}_{2}}{2{\alpha }_{1}{L}_{1}}\right)}^{2}}.$$
(64)

Let us denote

$$\beta =\sqrt{1+{\left(\frac{{L}_{2}}{2{\alpha }_{1}{L}_{1}}\right)}^{2}}.$$
(65)

And

$${e}_{s}^{{'}}=\beta {e}_{s}.$$
(66)

In the case of this study, the angle \(\theta\) is equal to \(\frac{\pi }{4}\), so the link between the jumps \({e}_{s}\) and \({e}_{s}^{{'}}\) could be directly expressed by the expression (67):

$$\mathrm{cos}\left(\theta \right)=\frac{\sqrt{2}}{2}={e}_{s}/{e}_{s}^{{'}}.$$
(67)

For more genericity of the modeling approach, the author wanted to express the final expression of the total scanning length according to all geometrical parameters as dummy variables. Subsequently, in the simulation, the numerical values will appropriately replace the problem parameters.

Thus, according to (62), the expression of the command xH becomes \({x}_{{H}_{A}}\) such that:

$$\left\{\begin{array}{c}{x}_{H}\left(k\right)={x}_{H/A}(k)\\ {x}_{{H}_{A}}\left(k\right)=k{e}_{s}^{{{'}}}=k\beta {e}_{s}\\ 1\le k\le {k}_{A}\end{array},\right.$$
(68)

where \({x}_{H/A}(k)\) is the restriction of \({x}_{H}\) on the area A, function of the index k.

The index k is the increment of the command, it begins by \({k}_{1}=1\) till a limit value \({k}_{\mathrm{A}}\) that limits the area (A) as depicted in Fig. 7. From the same figure, the k index takes \({k}_{\mathrm{A}}\) value when the point C reaches the right limits of the area (A). This condition is expressed by:

$${x}_{C}\left({k}_{A}\right)={\alpha }_{1}{L}_{1},$$
(69)
$${x}_{H}\left({k}_{A}\right)={k}_{A}\beta {e}_{s}.$$
(70)

Replacing (69) and (70) in the Eq. (57):

$${\alpha }_{1}{L}_{1}=\left({a}^{2}+1\right){k}_{A}\beta {e}_{s}+a\left(b-\frac{{L}_{2}}{2}\right).$$

Thus, \({k}_{A}\) is computed using the expression (71).

$${k}_{A}=\frac{{\alpha }_{1}{L}_{1}}{\left({a}^{2}+1\right)\;{e}_{s}\beta }.$$
(71)

1.1.4 d. Correction of the index \({{k}}_{{A}}\)

Since \({k}_{A}\) is an integer number, the corrected \({k}_{{A}_{C}}\) must is expressed by:

$${k}_{{A}_{C}}=E\left(\frac{{\alpha }_{1}{L}_{1}}{\left({a}^{2}+1\right)\;{e}_{s}\beta }\right),$$
(72)

and

$${x}_{{H}_{A}}=\frac{{\alpha }_{1}{L}_{1}}{1+{a}^{2}}.$$
(73)

1.1.5 e. Productive length of the area (A)

On the area (A), the productive length \({L}_{{P}_{A}}\) is corresponds to the following summation:

$${L}_{{P}_{A}}=\sum _{k=1}^{{k}_{{A}_{C}}}{d}_{\overrightarrow{CH}/A}+{\left({d}_{\overrightarrow{CH}/A}\right)}_{f}.$$

where \({\left({d}_{\overrightarrow{CH}/A}\right)}_{f}\) is the distance \(CH\) at the limit of the area (A). According to the expression (61):

$${\left({d}_{\overrightarrow{CH}/A}\right)}_{f}=-a{x}_{{H}_{A}}\sqrt{1+{a}^{2}},$$

where \({x}_{{H}_{A}}\) is expressed by the Eq. (73).

So

$${L}_{{P}_{A}}=\sum _{k=1}^{{k}_{A}}{d}_{\overrightarrow{CH}/A}+{\left({d}_{\overrightarrow{CH}/A}\right)}_{f}=\begin{array}{c}\sqrt{1+{a}^{2}}\sum _{k=1}^{{k}_{{A}_{C}}}\left(-a{x}_{H}\right)\end{array}+\left(-a{x}_{{H}_{A}}\right)\sqrt{1+{a}^{2}}.$$

Since \({x}_{H}=k\;{e}_{s}^{{{'}}}\) (62)

$$\begin{aligned}{L}_{{P}_{A}}& =\begin{array}{c}\sqrt{1+{a}^{2}}\left[-\frac{a}{2}{k}_{{A}_{C}}\left({{k}_{A}}_{C}+1\right){e}_{s}^{{{'}}}+\left(-a{x}_{{H}_{A}}\right)\right],\end{array}\\{L}_{{P}_{A}}& =\begin{array}{c}\sqrt{1+{a}^{2}}\left[-\frac{a\beta }{2}{e}_{s}{k}_{{A}_{C}}\left({k}_{{A}_{C}}+1\right)+\left(-a{x}_{{H}_{A}}\right)\right]\end{array},\\ {L}_{{P}_{A}}& =\begin{array}{c}-a\sqrt{1+{a}^{2}}\left[\frac{\beta }{2}{e}_{s}{k}_{{A}_{C}}\left({k}_{{A}_{C}}+1\right)+{x}_{{H}_{A}}\right]\end{array}.\end{aligned}$$
(74)

1.1.6 f. Jump length of the area (A)

On the other hand, the non-productive or jump length \({L}_{{J}_{A}}\) is calculated by multiplying the jumps lengths \({e}_{s}\) and \({e}_{s}^{{'}}\) by their respective number of repetitions.

The author analyzes two cases:

\({k}_{{A}_{C}}\) -is an impair number:

$$\begin{aligned}{L}_{{J}_{A}}&=\sum _{k=1}^{E\left({k}_{{A}_{C}}/2\right)}({e}_{s}+{e}_{s}^{{{'}}})=\sum _{k=1}^{E\left({k}_{{A}_{C}}/2\right)}{e}_{s}\left(1+\beta \right),\\ {L}_{{J}_{A}}&=E\left({k}_{{A}_{C}}/2\right)\left(1+\beta \right){e}_{s}.\end{aligned}$$
(75)

\({k}_{{A}_{C}}\) -is pair number:

$$\begin{aligned}{L}_{{J}_{A}}&=\sum _{k=1}^{\frac{{k}_{{A}_{C}}}{2}-1}{e}_{s}+\sum _{k=1}^{\frac{{k}_{{A}_{C}}}{2}}{e}_{s}^{{{'}}},\\{L}_{{J}_{A}}& =\left(\frac{{k}_{{A}_{C}}}{2}-1\right){e}_{s}+\frac{{k}_{{A}_{C}}}{2}{e}_{s}^{{{'}}}.\end{aligned}$$
(76)

1.2 B. Study of the area (B)

Given the rectangular geometry analyzed in this paper, the region (A) and (B) are symmetrical according to the red line of Fig. 7. Then the productive and non-productive lengths formulated for the area (A) are adopted for the area (B).

1.3 C. Study of the area C

According to Fig. 4, the area (C) corresponds to a simple rectangle. The scanning schema to adopt can be composed by the classical chess policy or it is possible to create a second level of skeleton scanning on this area. In order to proceed as simple as possible for this first stage of skeleton scanning modeling, the authors decided to adopt the classical chess strategy on the area (C). This is consistent with the scanning principal adopted in this study, as the chess schema remains perpendicular and parallel to the skeleton. Thus, the constraint of the perpendicularity to the skeleton is well assured. It is possible to adopt a meander scanning perpendicular to the \(\overrightarrow{X}\) axis which will correspond to a scanning perpendicularly to the skeleton of the region (C). In this case the scanning parameters of the (C) region will be \(\left({n}_{{C}_{x}},{n}_{{C}_{y}}\right)=\left(\mathrm{1,1}\right)\).

The productive length \({L}_{{P}_{C}}\) and the non-productive or jump length \({L}_{{J}_{C}}\) can be similarly formulated from Eqs. (81) and (82) that are developed for the chess scanning Appendix II.A. As expressed by these equations, the scanning schema can be fixed according to the number or the dimensions of the patterns of Figs. 5 and 6.

After manual development adaptation, the productive and the jump lengths of the area (C) are expressed by the Eqs. (77) and (78), respectively:

$${{L}_{P}}_{C}=\frac{{N}_{1}{\alpha }_{1}{L}_{1}}{2}\left(\frac{1}{{n}_{{C}_{x}}}\left(\frac{{L}_{2}}{2{n}_{{C}_{y}}{e}_{s}}+1\right)+\frac{1}{{n}_{{C}_{y}}}\left(\frac{{\alpha }_{2}{L}_{1}}{2{n}_{{C}_{x}}{e}_{s}}+1\right)\right).$$

Since

$$\left\{\begin{array}{c}{\alpha }_{1}{L}_{1}=\frac{{L}_{2}}{2}\\ {\alpha }_{2}{L}_{1}={L}_{1}-{L}_{2}\end{array}\right.,$$

the productive and non-productive lengths of C area become:

$${{L}_{P}}_{C}=\frac{{N}_{1C}{L}_{2}}{4}\left(\frac{1}{{n}_{{C}_{x}}}\left(\frac{{L}_{2}}{2{n}_{{C}_{x}}{n}_{{C}_{y}}{e}_{s}}+1\right)+\frac{1}{{n}_{{C}_{y}}}\left(\frac{\left({L}_{1}-{L}_{2}\right)}{2{n}_{{C}_{x}}{e}_{s}}+1\right)\right),$$
(77)
$${{L}_{J}}_{C}=\frac{{L}_{2}}{2}\left(\frac{{N}_{1C}}{{n}_{{C}_{y}}}+\frac{{N}_{2C}{L}_{2}}{2{n}_{{C}_{x}}}\right),$$
(78)
$$\begin{array}{c}\text{if }\left(\left({n}_{{C}_{x}}\;\mathrm{i}\mathrm{s}\;\mathrm{p}\mathrm{a}\mathrm{i}\mathrm{r}\;\right)\;\text{or}\;\left({n}_{{C}_{y}}\;\mathrm{i}\mathrm{s}\;\mathrm{p}\mathrm{a}\mathrm{i}\mathrm{r}\right)\right): {N}_{1C}={N}_{2C}=\frac{{n}_{{C}_{x}}{n}_{{C}_{y}}}{2}\\ \text{else }\left\{\begin{array}{c}\text{ if chess begins with pattern} 1: {N}_{1C}=E\left(\frac{{n}_{{C}_{x}}{n}_{{C}_{y}}}{2}\right)+1\\ \text{ if chess begins with pattern} 2: {N}_{2C}=E\left(\frac{{n}_{{C}_{x}}{n}_{{C}_{y}}}{2}\right)+1\\ {N}_{1}+{N}_{2}={n}_{{C}_{x}}{n}_{{C}_{y}}\end{array}\right.\end{array}.$$
(79)

where N1C is the total number of chess pattern 1 (Fig. 8a); N2C is the total number of pattern 2 (Fig. 8b); \({n}_{{C}_{x}}\) is the number of divisions of the dimension of the rectangle according to the pattern along the axis \(\overrightarrow{x}\); \({n}_{{C}_{y}}\) is the number of divisions of the dimension of the rectangle according to the pattern along the axis \(\overrightarrow{y}.\)

Appendix II: Benchmark strategies lengths modeling

2.1 A. Classical chess strategy: production time formulation

2.1.1 a. Geometry parametrization

Figure 23 presents a typical example of the classical chessboard scanning strategy. According to this figure, the system (80) presents the possible count of pattern 1 and pattern 2 as displayed in Fig. 8 of Sect. 3.1.2. The system (80) expresses also the divisions of the \(\left({L}_{1}\times {L}_{2}\right)\) rectangle into regular \(\left({n}_{x}\times {n}_{y}\right)\) portions.

$$\left\{\begin{array}{c}{n}_{x}=E\left(\frac{{L}_{1}}{{a}_{x}}\right); {n}_{x}=\frac{{L}_{1}}{{a}_{x}}\in {\mathbb{N}}^{\mathrm{*}};{a}_{x}=\frac{{L}_{1}}{{n}_{x}}\\ {n}_{y}=E\left(\frac{{L}_{1}}{{a}_{x}}\right); {n}_{y}=\frac{{L}_{2}}{{a}_{x}}\in {\mathbb{N}}^{\mathrm{*}};{a}_{y}=\frac{{L}_{2}}{{n}_{y}}\end{array}\right.,$$
(80)

where ax is the length according to the \(\overrightarrow{x}\) axis; ay is the length according to the \(\overrightarrow{y}\) axis; e is the hatch space of the chess strategy.

Fig. 23
figure 23

Classical Chess scanning policy in the additive manufacturing processes

2.1.2 b. Total scanning length

2.1.2.1 i. Productive time: active scanning

The productive time of the pattern 1 and pattern 2 could be determined directly from Fig. 8a and b, respectively.

The productive lengths of patterns 1 and 2, are respectively noted as \({L}_{{P}_{1}}\) and \({L}_{{P}_{2}}\), and are expressed by the Eqs. (81.1) and (81.1):

$$\begin{aligned}{L}_{{P}_{1}} &={a}_{x}\left({m}_{y}+1\right) \quad (81.1)\\ {L}_{{P}_{2}} & ={a}_{y}\left({m}_{x}+1\right)\quad (81.2)\\ {m}_{x} &=E\left(\frac{{a}_{x}}{e}\right) \;\;\;\qquad (81.3)\\ {m}_{y} &=E\left(\frac{{a}_{y}}{e}\right),\end{aligned}$$
(81)

s.t.

\({m}_{x}\) and \({m}_{y}\) are, respectively, the number of divisions, resp. of the patterns 1 and 2 along the axis \(\overrightarrow{x}\) and \(\overrightarrow{y}\).

2.1.2.2 ii. Inactive/jump scanning lengths

The inactive or jump scanning could be defined as the scanning during which the laser or the electron beam is switched off in the case of PBF-LB/M, PBF-LB/P, PBF-EB/M processes. For Material Extrusion-based AM, this step is considered as productive. The jump scanning lengths, \({L}_{{J}_{1}}\) and \({L}_{{J}_{2}}\), related to pattern 1 and pattern 2 respectively are expressed by expressions (82.1) and (82.2):

$$\begin{aligned}{L}_{{J}_{1}}& ={a}_{y}\quad (82.1)\\ {L}_{{J}_{2}} & ={a}_{x} \quad (82.2)\end{aligned}$$
(82)

2.1.3 c. Total scanning length

Hence, the total lengths \({L}_{\mathrm{c}{\mathrm{h}}_{1}}\) and \({L}_{\mathrm{c}{\mathrm{h}}_{2}}\) of resp. pattern 1 and pattern 2 of the chess strategy are expressed by the system (83):

$$\left\{\begin{array}{c}{L}_{\mathrm{c}{\mathrm{h}}_{1}}={a}_{x}\left(E\left(\frac{{a}_{y}}{e}\right)+1\right)+{a}_{y} \left(83.1\right)\\ {L}_{\mathrm{c}{\mathrm{h}}_{2}}={a}_{y}\left(E\left(\frac{{a}_{x}}{e}\right)+1\right)+{a}_{x} \left(83.2\right)\end{array}\right..$$
(83)

Thus the total scanning time of the filling area related to the chess scanning strategy in the case of a rectangle \({L}_{1}\times {L}_{2}\) is given by the Eq. (84) and the system (85):

$${L}_{\mathrm{c}\mathrm{h}}={N}_{1} {L}_{\mathrm{c}{\mathrm{h}}_{1}}+{N}_{2}{L}_{\mathrm{c}{\mathrm{h}}_{2}},$$
(84)
$$\begin{array}{c}\text{if }\left(\left({n}_{x} \mathrm{i}\mathrm{s}\;\mathrm{p}\mathrm{a}\mathrm{i}\mathrm{r} \right) \mathrm{o}\mathrm{r} \left({n}_{y} \mathrm{i}\mathrm{s}\;\mathrm{p}\mathrm{a}\mathrm{i}\mathrm{r}\right)\right): {N}_{1}={N}_{2}=\frac{{n}_{x}{n}_{y}}{2}\qquad \;\;\;\; \;\left(85.1\right)\\ \text{else }\left\{\begin{array}{c}\text{if }\left(\begin{array}{c}\text{the scanning begins }\\ \text{with pattern }1\end{array}\right):{N}_{1}=E\left(\frac{{n}_{x}{n}_{y}}{2}\right)+1 \quad \left(85.2\right)\\ \text{if }\left(\begin{array}{c}\text{the scanning begins}\\ \text{ with pattern }2\end{array}\right):{N}_{2}=E\left(\frac{{n}_{x}{n}_{y}}{2}\right)+1 \quad\left(85.3\right)\\ {N}_{1}+{N}_{2}=1\end{array}\right.\end{array}.$$
(85)

where N1 is the total number of pattern 1; N2 is the total number of pattern 2; \({n}_{x}\) is the number of divisions of the dimension of the rectangle along the axis \(\overrightarrow{x}\); \({n}_{y}\) is the number of divisions of the dimension of the rectangle along the axis \(\overrightarrow{y}\);

2.2 B. Stripe strategy

Figure 9 od Sect. 3.1.3 presents the geometry parametrization of a stripe strategy scanning.

The distance “d” can be negative in the case of scanning overlap, positive or zero. In the case of this study, “d” is considered zero, which means that no overlap is considered. Other stripes strategies could be analyzed by the same methodology.

2.2.1 a. Stripe strategy parallel to x axis: pattern 1

The geometry analysis allows the calculation of the length of scanning according to the procedure described by the Eq. (86) and the system (87). The geometry parametrization if detailed in Fig. 9, Sect. 3.1.3:

$${L}_{\mathrm{s}\mathrm{t}1}={m}_{y}\left({m}_{x} e+{a}_{x}\right)+{L}_{x}^{r},$$
(86)
$$\begin{array}{c}{m}_{x}=\left\{\begin{array}{c}{m}_{x0}+1 \text{ if }{a}_{x}-{m}_{x0} e<e\\ {m}_{x0} \text{ if }{a}_{x}-{m}_{x0} e\ge e\end{array}\qquad (87.1)\right.\\ {m}_{y}=\left\{\begin{array}{c}{m}_{y0}+1 \text{ if }{a}_{y}-{m}_{y0} e<e\\ {m}_{y0} \text{ if }{a}_{y}-{m}_{y0} e\ge e\end{array}\right. \qquad(87.2)\\ {m}_{x0}=E\left(\frac{{a}_{x}}{e}\right) \qquad\qquad\qquad\qquad\qquad(87.3)\\ {m}_{y0}=E\left(\frac{{a}_{y}}{e}\right) \qquad\qquad\qquad\qquad\qquad(87.4)\\ \left\{\begin{array}{c}{L}_{x}^{r}={a}_{x}+{e}_{x}^{r} {m}_{x}\\ {e}_{x}^{r}=\left\{\begin{array}{c}{a}_{y}-{m}_{y} e \text{ if }{a}_{y}-{m}_{y} e \ge e\\ 0 \text{ else }\end{array}\right.\end{array}\right. \qquad(87.5)\end{array},$$
(87)

\({L}_{x}^{r}\) is the length of the last raw for which the height does not necessarily correspond to the hatch spacing e but to a residual hatch er.

2.2.2 b. Stripe strategy parallel to y axis: pattern 2

The analytical expression for the length of pattern 2, that is denoted \({L}_{\mathrm{s}\mathrm{t}2}\), is systematically deduced from pattern 1 by permuting x and y indices (see Eq. (87)):

$${L}_{\mathrm{s}\mathrm{t}2}={m}_{x}\left({m}_{y} e+{a}_{y}\right)+{L}_{y}^{r},$$
(88)

where

$$\begin{array}{c}{L}_{y}^{r}={a}_{y}+{e}_{y}^{r} {m}_{y}\\ {e}_{y}^{r}=\left\{\begin{array}{c}{a}_{x}-{m}_{x} e \;if\; {a}_{x}-{m}_{x} e \ge e\\ 0 \;else\end{array}\right.\end{array}.$$
(89)

2.2.3 c. Total stripe strategy scanning length

The numbers N1 and N2 of patterns 1 and 2 respectively are calculated by the same procedure like chess scanning strategy.

Thus, the total scanning length of \(\left({L}_{1}\times {L}_{2}\right)\) rectangle is calculated by the Eq. (90):

$${L}_{\mathrm{s}\mathrm{t}}={L}_{\mathrm{s}\mathrm{t}1} {N}_{1}+{L}_{\mathrm{s}\mathrm{t}2} {N}_{2}.$$
(90)

2.3 C. Spiral scanning strategy

Figure 10 of Sect. 3.1.4 presents the geometry parametrization of spiral strategy scanning.

The calculation procedure can be applied to both outer or internal spiral scanning strategy.

2.3.1 a. Spiral strategy starting by y axis: pattern 1

2.3.1.1 i. Sum of lengths along the x axis: \({\boldsymbol{L}}_{\boldsymbol{x}}\)

Following the same modeling procedure and according to Fig. 10:

$$\begin{aligned} {a}_{{x}_{1}}&={a}_{x}\\ {a}_{{x}_{2}}&={a}_{{x}_{1}}-e\\ {a}_{{x}_{3}}&={a}_{{x}_{2}}-e\\ &\vdots \\ {a}_{{x}_{i}}&={a}_{{x}_{i-1}}-e.\end{aligned}$$

Summation:

$${a}_{{x}_{i}}={a}_{x}-\sum _{j=2}^{i}e$$

So:

$$\begin{aligned}& \quad\left\{\begin{array}{c}\forall i\ge 2 : {a}_{{x}_{i}} ={a}_{x}-e\left(i-1\right)\\ {a}_{{x}_{1}}={a}_{x}\end{array}\right.\\{L}_{x}&=\sum _{i=1}^{{m}_{x}}{a}_{{x}_{i}}={a}_{{x}_{1}}+\sum _{i=2}^{{m}_{x}}{a}_{{x}_{i}}\\{L}_{x}&={a}_{x}+\sum _{i=2}^{{m}_{x}}\left({a}_{x}-e\left(i-1\right)\right)={m}_{x}{a}_{x}-\sum _{i=2}^{{m}_{x}}e\left(i-1\right)\\{L}_{x}&={m}_{x}{a}_{x}-e\sum _{i=2}^{{m}_{x}}i+\sum _{i=2}^{{m}_{x}}e={m}_{x}{a}_{x}-e\left(\sum _{i=1}^{{m}_{x}}i-1\right)+e\left({m}_{x}-1\right)\\{L}_{x}&={m}_{x}{a}_{x}-e\left(\frac{{m}_{x}}{2}\left({m}_{x}+1\right)-1\right)+e\left({m}_{x}-1\right)\\{L}_{x}& ={m}_{x}{a}_{x}-e\frac{{m}_{x}}{2}\left({m}_{x}-1\right),\end{aligned}$$
(91)

\({m}_{x}\) is computed according to the system (87).

2.3.1.2 ii. Sum of lengths along the y axis: \({{L}}_{{y}}\)

Following the same modeling procedure and according to Fig. 10:

$$\begin{aligned}{a}_{{y}_{1}}& ={a}_{y}\\ {a}_{{y}_{2}}& ={a}_{y}\\{a}_{{y}_{3}}&={a}_{{y}_{2}}-e\\ & \vdots\\ {a}_{{y}_{i}}& ={a}_{{y}_{i-1}}-e.\end{aligned}$$

Summation:

$${a}_{{y}_{i}}={a}_{y}-\sum _{j=3}^{i}e$$

So:

$$\begin{aligned}& \quad\left\{\begin{array}{c}\forall i\ge 3 : {a}_{{y}_{i}} ={a}_{y}-e\left(i-2\right)\\ {a}_{{y}_{1}}={a}_{{y}_{2}}={a}_{y}\end{array}\right.\\{L}_{y}&=\sum _{i=1}^{{m}_{y}}{a}_{{y}_{i}}={a}_{{y}_{1}}+{a}_{{y}_{2}}+\sum _{i=3}^{{m}_{y}}{a}_{{y}_{i}}=2 {a}_{y}+\sum _{i=3}^{{m}_{y}}\left({a}_{y}-e\left(i-2\right)\right)\\{L}_{y}&=2 {a}_{y}+\left({m}_{y}-2\right){a}_{y}-e\sum _{i=3}^{{m}_{y}}\left(i-2\right)\\{L}_{y}&={m}_{y}{a}_{y}+2e\left({m}_{y}-2\right)-e\left(-1-2+\sum _{i=1}^{{m}_{y}}i\right)\\{L}_{y}&={m}_{y}{a}_{y}+2 e {m}_{y}-4e+3e-e\frac{my}{2}\left({m}_{y}+1\right)\\{L}_{y}&={m}_{y}{a}_{y}+e\left(2{m}_{y}-1-\frac{{m}_{y}}{2}\left({m}_{y}+1\right)\right)\\{L}_{y}& ={m}_{y}{a}_{y}-\frac{e}{2}\left(-4{m}_{y}+2+{m}_{y}\left({m}_{y}+1\right)\right)\\ {L}_{y}& ={m}_{y}{a}_{y}-\frac{e}{2}\left({m}_{y}^{2}-3{m}_{y}+2\right),\end{aligned}$$
(92)

\({m}_{y}\) is computed according to the system (87).

2.3.1.3 iii. Total length of pattern 1

The total length of pattern 1 is expressed by Eq. (93):

$$\begin{aligned}{L}_{1}&={L}_{x}+{L}_{y}\\{L}_{sp1}&={m}_{x}{a}_{x}+{m}_{y}{a}_{y}-\frac{e}{2}\left({m}_{x}\left({m}_{x}-1\right)+\left({m}_{y}^{2}-3{m}_{y}+2\right)\right).\end{aligned}$$
(93)

2.3.2 b. Spiral strategy starting by y axis: pattern 2

Pattern 2 of the spiral strategy corresponds to scanning starting parallel to the x axis. The total scanning length of spiral pattern 2 can be deduced from expression (93) by swapping the indices x and y resulting in the Eq. (94):

$${L}_{\mathrm{s}\mathrm{p}2}={m}_{x}{a}_{x}+{m}_{y}{a}_{y}-\frac{e}{2}\left({m}_{y}\left({m}_{y}-1\right)+\left({m}_{x}^{2}-3{m}_{x}+2\right)\right).$$
(94)

2.3.3 c. Total spiral strategy scanning length

The numbers N1 and N2 of patterns 1 and 2, respectively, are calculated by the same procedure as the chess scanning strategy.

The total spiral strategy scanning length of the \({L}_{1}\times {L}_{2}\) is calculated by the Eq. (95):

$${L}_{\mathrm{s}\mathrm{p}}={N}_{1} {L}_{\mathrm{s}\mathrm{p}1}+{N}_{2}{L}_{\mathrm{s}\mathrm{p}2}.$$
(95)

2.4 D. Contour scanning strategy

Figure 11 of Sect. 3.1.5 presents the geometry parametrization of contour strategy scanning.

2.4.1 a. Contour strategy starting by y axis: pattern 1

Pattern 1 of the contour strategy corresponds to scanning starting parallel to the y axis. The total scanning length of contour pattern 1 is modeled according to the following sections.

2.4.1.1 i. Sum of lengths along the x axis: \({{L}}_{{x}}\)

Following the same modeling procedure and according to Fig. 11:

$$\begin{aligned}{a}_{{x}_{1}}&={a}_{x}\\{a}_{{x}_{2}}&={a}_{{x}_{1}}\\{a}_{{x}_{3}}&={a}_{{x}_{2}}-2e\\{a}_{{x}_{4}}&={a}_{{x}_{3}}-2e\\{a}_{{x}_{i}}&={a}_{{x}_{i-1}}-2e\end{aligned}$$

Summation:

$$\begin{aligned}& \quad\left\{\begin{array}{c}\forall i\ge 3 {a}_{{x}_{i}} ={a}_{x}-2\sum _{j=3}^{i}e\\ {a}_{{x}_{1}}={a}_{{x}_{2}}={a}_{x}\end{array}\right.\\{a}_{{x}_{i}}&={a}_{x}-2e\left(i-2\right)\\{L}_{x}&=\sum _{i=1}^{{m}_{x}}{a}_{{x}_{i}}={a}_{{x}_{1}}+{a}_{{x}_{2}}+\sum _{i=3}^{{m}_{x}}\left({a}_{x}-2e\left(i-2\right)\right)\\{L}_{x}&=\sum _{i=1}^{{m}_{x}}{a}_{{x}_{i}}=2{a}_{x}+{a}_{x}\left({m}_{x}-2\right)-2e\sum _{i=3}^{{m}_{x}}\left(i-2\right)\\{L}_{x}&={m}_{x}{a}_{x}-2e\left(-1-2+\sum _{i=1}^{{m}_{x}}i\right)+4e\left({m}_{x}-2\right)\\{L}_{x}&={m}_{x}{a}_{x}+e\left(6-{m}_{x}\left({m}_{x}+1\right)+4\left({m}_{x}-2\right)\right)\\{L}_{x}&={m}_{x}{a}_{x}-e\left({m}_{x}^{2}-3{m}_{x}+2\right),\end{aligned}$$
(96)

\({m}_{x}\) is computed according to the system (87).

2.4.1.2 ii. Sum of lengths along the y axis: \({{L}}_{{y}}\)

Following the same modeling procedure and according to Fig. 11:

$$\begin{aligned}{a}_{{y}_{1}}&={a}_{y}\\{a}_{{y}_{2}}&={a}_{{y}_{1}}-e\\{a}_{{y}_{3}}&={a}_{{y}_{2}}-2e\\{a}_{{y}_{4}}&={a}_{{y}_{3}}+e\\{a}_{{y}_{5}}&={a}_{{y}_{4}}-2e\\{a}_{{y}_{6}}&={a}_{{y}_{5}}-e\\{a}_{{y}_{7}}&={a}_{{y}_{6}}-2e\\{a}_{{y}_{8}}& ={a}_{{y}_{7}}+e\\& \quad \vdots\\ & \left\{\begin{array}{c}\forall i\ge 3 : {a}_{{y}_{i}} ={a}_{y}-2 e \left(E\left(\frac{i-3}{2}\right)+1\right)\\ {a}_{{y}_{1}}={a}_{y}\end{array}\right.\end{aligned}$$

Summation:

$$\begin{aligned}{L}_{y}&=\sum _{i=1}^{{m}_{y}}{a}_{{y}_{i}}={a}_{{y}_{1}}+{a}_{{y}_{2}}+\sum _{i=3}^{{m}_{y}}{a}_{{y}_{i}}\\{L}_{y}&=2{a}_{y}+\sum _{i=3}^{{m}_{y}}\left({a}_{y}-2 e \left(E\left(\frac{i-3}{2}\right)+1\right)\right)\\{L}_{y}&={m}_{y}{a}_{y}-2 e\left({m}_{y}-2+\sum _{i=3}^{{m}_{y}}E\left(\frac{i-3}{2}\right)\right),\end{aligned}$$
(97)

\({m}_{y}\) is computed according to the system (87).

2.4.1.3 iii. Total length of scanning along the diagonal

The total length along the diagonal is the sum of the e’ distances (Fig. 11).

Flowing the same techniques of indexing, it can be stated that:

$${e}_{i}^{{'}}=\left\{\begin{array}{c}\sqrt{2}e;\quad \text{if }i\text{ pair}\\ \text{NaN}\quad \text{else}\end{array}\right..$$
(98)

Thus, the total length along the diagonal is expressed by:

$${L}_{\mathrm{D}\mathrm{i}\mathrm{a}\mathrm{g}}=\sum _{i=1}^{m}{e}_{i}^{{'}}+{e}_{r}^{{'}}.$$
(99)

The parameter m and \({e}_{r}^{{'}}\) are calculated using the procedure (100) and (101). \({e}_{r}^{{'}}\) is a residual distance to scan in order to avoid a lack of matter in the last processing step which can be caused by the integer count \({m}_{x}\) and \({m}_{y}\) of the scanning steps.

$$\begin{array}{c}\text{if }{a}_{{x}_{mx}}<e:\left\{\begin{array}{c} m={m}_{x}\\ {e}_{r}^{{'}}=0\end{array}\right.\\\text{ else} : \left\{\begin{array}{c}\text{if }{a}_{{y}_{my}}<e :\left\{\begin{array}{c}m={m}_{y}\\ {e}_{r}^{{'}}=\sqrt{{a}_{{y}_{my}}^{2}+{\left({e}_{y}^{r}\right)}^{2}}\\ {e}_{y}^{r}={a}_{{x}_{mx}}-e\end{array}\right.\\ \text{else }:\left\{\begin{array}{c}m={m}_{y}\\ {e}_{r}^{{'}}={e}^{{'}}=\sqrt{2} e\end{array}\right.\end{array}\right.\end{array} ,$$
(100)
$$\left\{\begin{array}{c}\text{if }{a}_{{x}_{my}}<e:\left\{\begin{array}{c} m={m}_{y}\\ {e}_{r}^{{'}}=0\end{array}\right.\\ \text{else }: \left\{\begin{array}{c}\text{if }{a}_{{x}_{mx}}<e :\left\{\begin{array}{c}m={m}_{x}\\ {e}_{r}^{{'}}=\sqrt{{a}_{{x}_{mx}}^{2}+{\left({e}_{x}^{r}\right)}^{2}}\\ {e}_{x}^{r}={a}_{{y}_{my}}-e\end{array}\right.\\ \text{else }:\left\{\begin{array}{c}m={m}_{x}\\ {e}_{r}^{{'}}={e}^{{'}}=\sqrt{2} e\end{array}\right.\end{array}\right.\end{array}\right. .$$
(101)
2.4.1.4 iv. Total length of contour pattern 1

The total length of contour pattern is computed according to Eq. (102):

$${L}_{\mathrm{c}\mathrm{o}\mathrm{n}{\mathrm{t}}_{1}}={L}_{x}+{L}_{y}+{L}_{\mathrm{D}\mathrm{i}\mathrm{a}\mathrm{g}}.$$
(102)

2.4.2 b. Contour strategy starting by x axis: pattern 2

Pattern 2 of the contour strategy corresponds to scanning starting parallel to the x axis. The total scanning length of contour pattern 2 can be deduced from the previous paragraph by swapping the indices x and y of Eq. (102) and related equations.

2.4.3 c. Total contour strategy scanning length

The total contour strategy scanning length of the \({L}_{1}\times {L}_{2}\) is calculated by Eq. (103).

The numbers N1 and N2 of patterns 1 and 2, respectively, are calculated by the same procedure like chess scanning strategy:

$${L}_{\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{t}}={N}_{1} {L}_{\mathrm{c}\mathrm{o}\mathrm{n}{\mathrm{t}}_{1}}+{N}_{2}{L}_{\mathrm{c}\mathrm{o}\mathrm{n}{\mathrm{t}}_{2}}.$$
(103)

Appendix III: Scanning parameters according to the bibliography

See Table 6.

Table 6 AM filling parameters—case of PBF-LB/M processes

Appendix IV: Curves and surfaces modeling

4.1 A. Case of study 1: Modeling of benchmark strategies lengths \({L}_{i}\) according to the hatch space distance e (Fig. 14)

According to Fig. 14, the authors propose to fit hyperbolic curves to the \((e,{L}_{i})\) dispersions for the set of benchmark scanning strategies. Equation (104) present the proposed model:

$${\stackrel{\sim }{L}}_{i}=\frac{a}{{e}^{n}},$$
(104)

where \(\left\{\begin{array}{c}a>0\\ n>0\end{array}\right.. {\stackrel{\sim }{L}}_{i}\) is the approximation of the Li distribution; i is a given strategy from the set: \(\left\{\mathrm{c}\mathrm{h}\mathrm{e}\mathrm{s}\mathrm{s} \left(i=1\right), \mathrm{s}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{p}\mathrm{e} \left(i=2\right), \mathrm{s}\mathrm{p}\mathrm{i}\mathrm{r}\mathrm{a}\mathrm{l}\;\left(i=3\right), \mathrm{c}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{o}\mathrm{u}\mathrm{r} \left(i=4\right)\right\}\).

A preliminary linearization of the distribution was applied by means of the log function, as follows:

$$\mathrm{log}\left({\stackrel{\sim }{L}}_{i}\right)=\mathrm{log}\left(a\right)-n \mathrm{l}\mathrm{o}\mathrm{g}\left(e\right).$$
(105)

Hence, linear regression was applied for all Li curves. The models parameters estimation is presented in Table 7 with the correspondent R2 statistics related to the linear fitting.

Table 7 Hyperbolic fitting of scanning benchmark strategies lengths—case of study 1 (Fig. 14)

4.2 B. Case of study 2: modeling of the first order slopes of \({L}_{{S}{B}{P}}\) according to the hatch space distance e (Fig. 18)

According to Fig. 18, the authors propose to fit hyperbolic curves to the first order variations or slopes of \({L}_{\text{SBP}}\) that were noted in Fig. 18 as:

$$\left\{\begin{array}{c}{b}_{1}=\partial {L}_{\text{SBP}}/ \partial {L}_{1}\\ {b}_{2}=\partial {L}_{\text{SBP}}/\partial {L}_{2}\\ {b}_{3}=\partial {L}_{\text{SBP}}/\partial {n}_{{C}_{x}}\\ {b}_{4}=\partial {L}_{\text{SBP}}/\partial {n}_{{C}_{y}}\end{array}\right..$$

The hyperbolic models that are proposed are expressed by Eq. (106):

$${b}_{i}=\frac{a}{{e}^{n}}.$$
(106)

where \(\left\{\begin{array}{c}i\in \left\{1,..,4\right\}\\ a>0\\ n>0\end{array}\right..\)

The same linearization and fitting procedures were applied similarly to the modeling of the previous paragraph.

The models parameters estimation is presented in Table 8 with the correspondent R2 statistics related to the linear fitting.

Table 8 Hyperbolic fitting of \({L}_{\text{SBP}}\) slopes—case of study 1 (Fig. 18)

4.3 C. Case of study 2: modeling of \({L}_{\mathrm{S}\mathrm{B}\mathrm{P}}\) according to \(\left({L}_{1},\;{L}_{2},\;{n}_{{C}_{x}},{n}_{{C}_{y}}\right)\)

For each hatch space, linear, interactions, pure quadratic, and full quadratic models were tested in order to propose a regression modeling for \({L}_{\mathrm{S}\mathrm{B}\mathrm{P}}\) as simple as possible. Figure 24 shows the R2 statistics related to each regressive model. It is interesting to see that full quadratic models produce high values of R2, generally higher than 75%.

Hence, one can argue that the family of functions \({L}_{SB{P}_{e}}\left({L}_{1}, {L}_{2}, {n}_{{C}_{x}},{n}_{{C}_{y}}\right)\) could be described as a set of quadratics of \(\left({L}_{1}, {L}_{2}, {n}_{{C}_{x}},{n}_{{C}_{y}}\right)\) according to the formulation (107).

For each hatch space distance e:

$${\stackrel{\sim }{L}}_{\mathrm{S}\mathrm{B}{\mathrm{P}}_{e}}\left(\overrightarrow{x}\right)=\frac{1}{2}{\overrightarrow{x}}^{T}{A}_{e}\overrightarrow{x}+{\overrightarrow{{b}_{e}}}^{T}\overrightarrow{x}+{\gamma }_{e}.$$
(107)

where \(\overrightarrow{x}={\left({L}_{1}, {L}_{2}, {n}_{{C}_{x}},{n}_{{C}_{y}}\right)}^{T}\) is the model geometrical features; \({A}_{e}\) is the family of symmetric matrices associated to the quadratic terms of the models \({\stackrel{\sim }{L}}_{\mathrm{S}\mathrm{B}{\mathrm{P}}_{e}}\); \(\overrightarrow{{b}_{e}}\) is the family of the multiplications of the first order terms of the function \({\stackrel{\sim }{L}}_{\mathrm{S}\mathrm{B}{\mathrm{P}}_{e}}\); \({\gamma }_{e}\) is the family of constant terms associated to the function \({\stackrel{\sim }{L}}_{\mathrm{S}\mathrm{B}{\mathrm{P}}_{e}}\) (see Fig. 24).

Fig. 24
figure 24

R2 statistics VS hatch space for

Appendix V: Specific gains \({S}{{G}}_{\max}\) plot

The maximal specific gains \(S{G}_{\mathrm{m}\mathrm{a}\mathrm{x}}\) were computed at minimal values of \({L}_{\text{SBP}}\) corresponding to \(\left(\mathrm{m}\mathrm{i}\mathrm{n}\left({n}_{{C}_{x}}\right), \mathrm{m}\mathrm{i}\mathrm{n}\left({n}_{{C}_{y}}\right)\right)\) (see Fig. 25).

Fig. 25
figure 25figure 25

Specific gains \(S{G}_{\mathrm{m}\mathrm{i}\mathrm{n}}\) according to \(\left({L}_{1}, {L}_{2},e\right)\) a SBP VS Chess b SBP VS Stripe c SBP VS Spiral d SBP VS Contour. \(S{G}_{\mathrm{m}\mathrm{i}\mathrm{n}}\) are computed for the higher values of \({L}_{\mathrm{S}\mathrm{B}\mathrm{P}}\) at \(\left(\mathrm{m}\mathrm{a}\mathrm{x}\left({n}_{{C}_{x}}\right), \mathrm{m}\mathrm{a}\mathrm{x}\left({n}_{{C}_{y}}\right)\right)\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Jai, M., Akhrif, I. & Saidou, N. Skeleton-based perpendicularly scanning: a new scanning strategy for additive manufacturing, modeling and optimization. Prog Addit Manuf 6, 781–820 (2021). https://doi.org/10.1007/s40964-021-00197-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40964-021-00197-z

Keywords

Navigation