Skip to main content
Log in

Effect of Ageing Temperature on the Hardness, Microstructural and Dry Sliding Wear Performance of the Functionally Graded A356 Alloy

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

The present investigation aims to fabricate functionally graded aluminium alloy A356 processed through stir casting followed by vertical centrifugal casting. The hardness was examined using a Vickers’s microhardness tester, and the microstructure was examined through an optical microscope (OM), high-resolution scanning electron microscope (HRSEM), and X-ray diffraction (XRD) instrument. The dry sliding wear behaviour was examined using a pin-on-disc tribometer to study the influence of ageing temperatures (145, 165, and 185 °C), various zones (outer, middle, and inner) and applied load (10, 20, and 30N) on the specific wear rate (SWR) and coefficient of friction (COF). The sample aged at 165 °C had a 50% higher maximum hardness in the higher hardness zone than the as-cast FG aluminium alloy. Taguchi's technique and analysis of variance (ANOVA) determined the best and most significant sliding wear variables. The lowest SWR and COF of 0.00100 mm3/Nm and 0.382 were identified at the 165 °C aged higher hardness zone with a load of 10 N, and ANOVA analysis revealed that the applied load had a major impact. The worn surface examination confirmed the minimal wear damages in the higher hardness zone with an abrasive wear mechanism. The wear debris examination confirmed the oxide layer formation due to the tribochemical reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21

Similar content being viewed by others

References

  1. X.-P. Hu, Y. Zhao, Q. Wang, X.-Z. Zhang, R.-X. Li, B.-R. Zhang, Effect of pouring and cooling temperatures on microstructures and mechanical properties of as-cast and T6 treated A356 alloy. China Foundry. 16, 380–385 (2019). https://doi.org/10.1007/s41230-019-9068-8

    Article  Google Scholar 

  2. S.P. Singh, K.A.V. Geethan, D. Elilraja, T. Prabhuram, J.I. Durairaj, Optimization of dry sliding wear performance of functionally graded Al6061 / 20% SiC metal matrix composite using Taguchi method. Mater. Today Proc. 22(4), 2824–2831 (2020). https://doi.org/10.1016/j.matpr.2020.03.414

    Article  CAS  Google Scholar 

  3. R.K. Verma, D. Parganiha, M. Chopkar, A review on fabrication and characteristics of functionally graded aluminum matrix composites fabricated by centrifugal casting method. SN Appl. Sci. 3, 227 (2021). https://doi.org/10.1007/s42452-021-04200-8

    Article  CAS  Google Scholar 

  4. A.K. Patel, J.A. Vadher, Experimental investigation of effect of process parameters on the tensile strength of a near eutectic aluminum-silicon alloy in universal centrifugal casting machine (UCCM). Inter Metalcast 17, 1755–1762 (2023). https://doi.org/10.1007/s40962-022-00899-2

    Article  Google Scholar 

  5. M. Tattimani, S. Agari, Effect of rotational speed in vertical centrifugal casting on the wear properties of obtained aluminum tubes. Iran J. Sci. Technol. Trans. Mech. Eng. 43, 587–592 (2019). https://doi.org/10.1007/s40997-018-0163-z

    Article  Google Scholar 

  6. E. Jayakumar, T. Varghese, T.P.D. Rajan, B.C. Pai, Reciprocating wear analysis of magnesium-modified hyper-eutectic functionally graded aluminium composites. Trans. Indian Inst. Met. 72, 1643–1649 (2019). https://doi.org/10.1007/s12666-019-01706-z

    Article  CAS  Google Scholar 

  7. Y. Liu, J. Jiang, G. Xiao et al., Effects of heating temperature and holding time on microstructure and mechanical properties of thixoforged A356 aluminum alloy parts. J. Mater. Eng. Perform. 32, 2062–2073 (2023). https://doi.org/10.1007/s11665-022-07281-7

    Article  CAS  Google Scholar 

  8. B. Saleh, R. Fathi, N. Radhika, Z. Yu, S. Liu, L. Zhang, Effect of yttrium oxide on microstructure and mechanical properties of functionally graded magnesium matrix composites. J. Alloys Compounds 981, 173723 (2024). https://doi.org/10.1016/j.jallcom.2024.173723

    Article  CAS  Google Scholar 

  9. N. Radhika, M. Sam, Statistical analysis of tribological performance of functionally graded copper composite using DOE. Int. J. Automot. Mech. Eng. 18(3), 8978–8985 (2021). https://doi.org/10.15282/ijame.18.3.2021.10.0687

    Article  CAS  Google Scholar 

  10. P. Gurusamy, S.H.K. Raj, B. Bhattacharjee et al., Assessment of microstructure and investigation in to the mechanical characteristics and machinability of A356 aluminum hybrid composite reinforced with SiCp and MWCNTs fabricated through rotary centrifugal and squeeze casting processes. SILICON 16, 367–382 (2024). https://doi.org/10.1007/s12633-023-02686-y

    Article  CAS  Google Scholar 

  11. S. Mahmood Ali, Optimization of centrifugal casting parameters of Al Si alloy by using the response surface methodology. Int. J. Eng. Trans. B Appl. 32(11), 1516–1526 (2019). https://doi.org/10.5829/ije.2019.32.11b.02

    Article  CAS  Google Scholar 

  12. M. Kaba, A. Donmez, A. Cukur, A.F. Kurban, Y. Birol, AlSi5Mg0.3 alloy for the manufacture of automotive wheels. Int. J. Met. 12, 614–624 (2018). https://doi.org/10.1007/s40962-017-0191-2

    Article  CAS  Google Scholar 

  13. E. Jayakumar, J.C. Jacob, T.P.D. Rajan et al., Processing and characterization of functionally graded aluminum (A319)-SiCp metallic composites by centrifugal casting technique. Metall. Mater. Trans. A 47, 4306–4315 (2016). https://doi.org/10.1007/s11661-016-3558-8

    Article  CAS  Google Scholar 

  14. P.E.N.G. Ji-hua, T.A.N.G. Xiao-long, H.E. Jian-ting, X.U. De-ying, Effect of heat treatment on microstructure and tensile properties of A356 alloys. Trans. Nonferrous Metals Soc. China. 21(9), 1950–1956 (2011). https://doi.org/10.1016/S1003-6326(11)60955-2

    Article  CAS  Google Scholar 

  15. T. Tunçay, S. Bayoğlu, The effect of iron content on microstructure and mechanical properties of A356 cast alloy. Metall. Mater. Trans. B 48, 794–804 (2017). https://doi.org/10.1007/s11663-016-0909-1

    Article  CAS  Google Scholar 

  16. E. Jayakumar, T.P.D. Rajan, B.C. Pai, Effect of Mg on solidification microstructures of homogenous and functionally graded A390 aluminum alloys. Trans. Indian Inst. Met. 65, 677–681 (2012). https://doi.org/10.1007/s12666-012-0198-6

    Article  CAS  Google Scholar 

  17. R. Jojith, N. Radhika, Heat-treatment studies on mechanical and reciprocating wear behaviour of functionally graded A356 alloy. Mater. Res. Express. 6, 1165c2 (2019). https://doi.org/10.1088/2053-1591/ab4dd7

    Article  Google Scholar 

  18. B. Saleh, J. Jiang, A. Ma, D. Song, D. Yang, Xu. Qiong, Review on the influence of different reinforcements on the microstructure and wear behavior of functionally graded aluminum matrix composites by centrifugal casting. Met. Mater. Int. 26, 933–960 (2020). https://doi.org/10.1007/s12540-019-00491-0

    Article  CAS  Google Scholar 

  19. M. Sam, N. Radhika, B. Saleh, Influence of boride, oxide, and carbide ceramics as secondary reinforcement in T6–A333 functionally graded hybrid composites. Ceram. Int. 48(19), 28528–28547 (2022). https://doi.org/10.1016/j.ceramint.2022.06.167

    Article  CAS  Google Scholar 

  20. R. Ambigai, S. Prabhu, Characterization and thermo-mechanical analysis of centrifugally fabricated aluminium-boron carbide functionally graded composites. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems (2024). https://doi.org/10.1177/23977914241227593

  21. A. Abdi, M.S. Salehi, S.A. Fatemi, L. Iuliano, A. Saboori, Microstructure-induced anisotropic tribological properties of Sc-Zr modified Al–Mg alloy (Scalmalloy®) produced via laser powder bed fusion process. Int. J. Adv. Manuf. Technol. 130, 755–779 (2024). https://doi.org/10.1007/s00170-023-12691-5

    Article  Google Scholar 

  22. R. Vijaya Kumar, M.M. Venugopal, K.G. Jaya Christiyan, P. Balachandra, T. Hemanth Raju, B. Manjunatha, T. Jagadeesha, N. Rangaswamy, G.A. Manjunath, S. Udayashankar, Taguchi analysis for wear characteristics of Al6063 alloy-zirconium silicate composites. J. Inst. Eng. (2024). https://doi.org/10.1007/s40033-024-00694-9

    Article  Google Scholar 

  23. R. Jojith, N. Radhika, M. Govindaraju, Reciprocating wear behavioural analysis of heat-treated aluminium ZrO2/Al7Si0.3Mg functionally graded composite through taguchi’s optimization method. SILICON 14, 11337–11354 (2022). https://doi.org/10.1007/s12633-022-01862-w

    Article  CAS  Google Scholar 

  24. S. Raghunandan, J.A. Hyder, T.P.D. Rajan, K. Narayan Prabhu, B.C. Pai, Processing of primary silicon and Mg2Si reinforced hybrid functionally graded aluminum composites by centrifugal casting. Mater. Sci. Forum 710, 395–400 (2012)

    Article  CAS  Google Scholar 

  25. J.R. Chandrashekar, M.H. Annaiah, R. Chandrashekar, Microstructure and mechanical properties of aluminum cast alloy A356 reinforced with dual-size B4C particles. Frattura ed Integrità Strutturale 57, 127–137 (2021). https://doi.org/10.3221/IGF-ESIS.57.11

    Article  Google Scholar 

  26. L. Tyagi, R. Butola, A.K. Jha, Mechanical and tribological properties of AA7075-T6 metal matrix composite reinforced with ceramic particles and aloevera ash via Friction stir processing. Mater. Res. Express 7, 066526 (2020). https://doi.org/10.1088/2053-1591/ab9c5e

    Article  CAS  Google Scholar 

  27. R. Jojith, N. Radhika, Reciprocal dry sliding wear of SiCp/Al–7Si-0.3 Mg functionally graded composites: Influence of T6 treatment and process parameters. Ceram. Int. 47(21), 30459–30470 (2021). https://doi.org/10.1016/j.ceramint.2021.07.225

    Article  CAS  Google Scholar 

  28. K.K. Ekka, S.R. Chauhan, Varun, Dry sliding wear characteristics of SiC and Al2O3 nanoparticulate aluminium matrix composite using taguchi technique. Arab. J. Sci. Eng. 40, 571–581 (2015). https://doi.org/10.1007/s13369-014-1528-2

    Article  CAS  Google Scholar 

  29. P. John, R.V. Rajam, R.M. Ramachandralal, K. Komalangan, Dry wear behavior of A356-SiCp functionally graded composite in unidirectional and reciprocating contacts. Ind. Lubr. Tribol. 73, 1105–1112 (2021). https://doi.org/10.1108/ILT-04-2021-0139

    Article  Google Scholar 

  30. D. Dey, A. Bhowmik, A. Biswas, Effect of SiC content on mechanical and tribological properties of Al2024-SiC composites. SILICON 14, 1–11 (2022). https://doi.org/10.1007/s12633-020-00757-y

    Article  CAS  Google Scholar 

  31. R. Jojith, R.C. Akhil, N. Radhika, Characterization and property analysis of heat-treated functionally graded Al8Si3Cu Alloy and TiC reinforced composite. Trans. Indian Inst. Met. 74(2), 459–471 (2021). https://doi.org/10.1007/s12666-020-02131-3

    Article  CAS  Google Scholar 

  32. R. Jojith, N. Radhika, Reciprocal dry sliding wear of SiCp/Al–7Si-0.3 Mg functionally graded composites: Influence of T6 treatment and process parameters. Ceram. Int. 47, 30459–30470 (2021). https://doi.org/10.1016/j.ceramint.2021.07.225

    Article  CAS  Google Scholar 

  33. Hu. Huarong, Y. Guob, J. Yan, J. Qiu, Yi. Wang, Dry sliding wear behavior of MoSi2-Mo5Si3-Mo5SiB2 composite at different temperatures and loads. Wear 428–429, 237–245 (2019). https://doi.org/10.1016/j.wear.2019.03.018

    Article  CAS  Google Scholar 

  34. R.K. Verma, D. Patel, M.K. Chopkar, Wear behavior investigation of Al-B4C functionally graded composite through Taguchi’s design of experiment. J. Eng. Res. 11, 537–548 (2023). https://doi.org/10.1016/j.jer.2023.1000954

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Prathap Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S.P., Ananthapadmanaban, D., Venkateshwaran, N. et al. Effect of Ageing Temperature on the Hardness, Microstructural and Dry Sliding Wear Performance of the Functionally Graded A356 Alloy. Inter Metalcast (2024). https://doi.org/10.1007/s40962-024-01370-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40962-024-01370-0

Keywords

Navigation