Skip to main content
Log in

The Influence of TiB2 Particles on the Artificial Aging Behavior of TiB2/Al–5Cu Composite

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

This study investigated the artificial aging process of TiB2/Al–5Cu composite, with a focus on the influence of TiB2 particles on the precipitation behavior of the composite. Additionally, a comparative analysis of the microhardness and tensile properties between the TiB2/Al–5Cu composite and the Al–5Cu alloy was conducted. X-ray Diffraction (XRD) analysis reveals that the TiB2/Al–5Cu composite consists of TiB2 and Al2Cu phases. The Scanning Electron Microscopy (SEM) imagery demonstrates a predominantly cellular crystal composition in the composite. Notably, as the aging time progresses, there’s an initial increase followed by a subsequent decrease in the gray grain boundaries of the composite. Transmission Electron Microscopy (TEM) images uncover the presence of needle-like θ phase, TiB2, and dislocations within the TiB2/Al–5Cu composite. The incorporation of TiB2 particles has emerged as a pivotal factor in significantly curtailing the artificial aging duration. With the peak hardness aging time determined at a mere 8 h, the TiB2/Al–5Cu composite showcases substantially higher hardness levels compared to the Al–5Cu base alloy. Remarkably, the optimum aging time for achieving the best mechanical properties in the composites is reduced from 20 to 8 h. Directly comparing the TiB2/Al–5Cu composite to the Al–5Cu alloy under peak aging conditions, notable enhancements in both yield strength (22%) and tensile strength (41%) are observed. Additionally, a slight increase in elongation is observed in the TiB2/Al–5Cu composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. A. Kordijazi, D. Weiss, S. Das, S. Behera, H.M. Roshan, P. Rohatgi, Effect of solidification time on microstructure, wettability, and corrosion properties of A205–T7 aluminum alloys. Int. J. Metalcast. 15, 2–12 (2021). https://doi.org/10.1007/s40962-020-00457-8

    Article  CAS  Google Scholar 

  2. G.K. Sigworth, The corrosion of Al–Cu-based alloys and comments on the paper “Effect of solidification time on microstructure, wettability and corrosion properties of A205–T7 aluminum alloys” by Amir Kordijazi et al. Int. J. Metalcast. 15, 13–16 (2021). https://doi.org/10.1007/s40962-020-00475-6

    Article  CAS  Google Scholar 

  3. V.S. Ayar, M.P. Sutaria, Comparative evaluation of ex situ and in situ method of fabricating aluminum/TiB2 composites. Int. J. Metalcast. 15, 1047–1056 (2021). https://doi.org/10.1007/s40962-020-00539-7

    Article  CAS  Google Scholar 

  4. M.K. Hullur, D.M. Goudar, K. Venkateshwaralu, Sliding wear behaviour of in situ TiB2 reinforced hypoeutectic Al–Si alloy composites. Int. J. Metalcast. 17(2), 1179–1190 (2022). https://doi.org/10.1007/s40962-022-00847-0

    Article  Google Scholar 

  5. R. Hu, R. Jiang, R. Li, Numerical simulation and casting experiments on particle dispersion in 2219 Al alloy by introducing Al–5Ti–1B and ultrasonic treatment. Int. J. Metalcast. (2023). https://doi.org/10.1007/s40962-023-01142-2

    Article  Google Scholar 

  6. R.P. Barot, R.P. Desai, M.P. Sutaria, Effect of processing temperature on the synthesis of in situ AlSi5Cu3/TiB2 composites cast in metal mold: structural and mechanical characterizations. Int. J. Metalcast. (2023). https://doi.org/10.1007/s40962-023-01067-w

    Article  Google Scholar 

  7. G.I. Eskin, D.G. Eskin, Production of natural and synthesized aluminum-based composite materials with the aid of ultrasonic (cavitation) treatment of the melt. Ultrason. Sonochem. 10(4–5), 297–301 (2003). https://doi.org/10.1016/S1350-4177(02)00158-X

    Article  CAS  PubMed  Google Scholar 

  8. Y. Xiong, W. Wang, R. Jiang, K. Lin, M. Shao, Mechanisms and FEM simulation of chip formation in orthogonal cutting in-situ TiB2/7050Al MMC. Materials 11(4), 1–19 (2018). https://doi.org/10.3390/ma11040606

    Article  CAS  Google Scholar 

  9. Y. Zhang, N. Ma, H. Wang, Y. Le, X. Li, Damping capacity of in situ TiB2 particulates reinforced aluminium composites with Ti addition. Mater. Des. 28(2), 628–632 (2007). https://doi.org/10.1016/j.matdes.2005.07.015

    Article  CAS  Google Scholar 

  10. K.L. Tee, L. Lu, M.O. Lai, In situ stir cast Al-TiB2 composite: processing and mechanical properties. Mater Sci Technol 17, 201–206 (2001)

    Article  CAS  Google Scholar 

  11. L. Lü, M.O. Lai, Y. Su, H.L. Teo, C.F. Feng, In situ TiB2 reinforced Al alloy composites. Scr. Mater. 45, 1017–1023 (2001). https://doi.org/10.1016/S1359-6462(01)01128-9

    Article  Google Scholar 

  12. L. Lu, M.O. Lai, F.L. Chen, Al-4 wt% Cu composite reinforced with in-situ TiB2 particles. Acta Mater. 45, 4297–4309 (1997). https://doi.org/10.1016/S1359-6454(97)00075-X

    Article  CAS  Google Scholar 

  13. Z. Sadeghian, M.H. Enayati, P. Beiss, Characterisation of in situ Al-TiB2 nanocomposite powder synthesised by mechanical alloying. Powder Metall. 54, 46–49 (2011)

    Article  CAS  Google Scholar 

  14. A.R. Kennedy, A.E. Karantzalis, S.M. Wyatt, The microstructure and mechanical properties of TiC and TiB2-reinforced cast metal matrix composites. J. Mater. Sci. 34, 933–940 (1999). https://doi.org/10.1023/A:1004519306186

    Article  CAS  Google Scholar 

  15. S. Suresh, N. Shenbag, V. Moorthi, Aluminium-titanium diboride (Al-TiB2) metal matrix composites: challenges and opportunities. Proc Eng 38, 89–97 (2012). https://doi.org/10.1016/j.proeng.2012.06.013

    Article  CAS  Google Scholar 

  16. P. Li, Y. Li, Y. Wu, G. Ma, X. Liu, Distribution of TiB2 particles and its effect on the mechanical properties of A390 alloy. Mater. Sci. Eng. A 546, 146–152 (2012). https://doi.org/10.1016/j.msea.2012.03.042

    Article  CAS  Google Scholar 

  17. Y. Zhang, N. Ma, H. Wang, Effect of particulate/Al interface on the damping behavior of in situ TiB2 reinforced aluminium composite. Mater. Lett. 61, 3273–3275 (2007). https://doi.org/10.1016/j.matlet.2006.11.052

    Article  CAS  Google Scholar 

  18. K. Lu, Composites offer the automotive industry an opportunity to reduce vehicle weight, improve performance. Mater. Sci. 328, 319–320 (2010). https://doi.org/10.1126/science.1182769

    Article  CAS  Google Scholar 

  19. A. Macke, B.F. Schultz, P. Rohatgi, Metal matrix: composites offer the automotive industry an opportunity to reduce vehicle weight, improve performance. Adv. Mater. Process. 170, 19–23 (2012)

    CAS  Google Scholar 

  20. D.K. Koli, G. Agnihotri, R. Purohit, Advanced aluminium matrix composites: the critical need of automotive and aerospace engineering fields. Mater. Today Proc. 2, 3032–3041 (2015). https://doi.org/10.1016/j.matpr.2015.07.290

    Article  CAS  Google Scholar 

  21. S.C. Tjong, Z.Y. Ma, Microstructural and mechanical characteristics of in situ metal matrix composites. Mater. Sci. Eng. R Rep. 29(3), 49–113 (2000). https://doi.org/10.1016/S0927-796X(00)00024-3

    Article  Google Scholar 

  22. P. Ajay Kumar, P. Rohatgi, D. Weiss, 50 years of foundry-produced metal matrix composites and future opportunities. Int. J. Metalcast. 127, 37–59 (2019)

    Google Scholar 

  23. Z. Chen, T. Wang, Y. Zheng, Y. Zhao, H. Kang, L. Gao, Development of TiB2 reinforced aluminum foundry alloy based in situ composites—part I: an improved halide salt route to fabricate Al–5 wt%TiB2 master composite. Mater. Sci. Eng. A 605, 301–309 (2014). https://doi.org/10.1016/j.msea.2014.02.088

    Article  CAS  Google Scholar 

  24. T. Wang, Z. Chen, Y. Zheng, Y. Zhao, H. Kang, L. Gao, Development of TiB2 reinforced aluminum foundry alloy based in situ composites—part II: enhancing the practical aluminum foundry alloys using the improved Al–5 wt%TiB2 master composite upon dilution. Mater. Sci. Eng. A 605, 22–32 (2014). https://doi.org/10.1016/j.msea.2014.03.021

    Article  CAS  Google Scholar 

  25. Z.C. Liu, T. Zhu, Y.W. Jia, D.F. Song, N. Zhou, K.H. Zheng, Preparation of in-situ TiB2 reinforced aluminum matrix composites assisted by two steps of ultrasonic vibration. Mater. Res. Express 8, 1–13 (2021). https://doi.org/10.1088/2053-1591/abea5a

    Article  CAS  Google Scholar 

  26. J.Y. Li, S.L. Lü, L. Chen, Q. Liao, W. Guo, S.S. Wu, Influence of squeeze casting pressure on nanoparticle distribution and mechanical properties of nano-SiCp/Al−Cu composites assisted with ultrasonic vibration. Trans. Nonferr. Met. Soc. China 33(7), 1977–1987 (2023). https://doi.org/10.1016/S1003-6326(23)66237-5

    Article  CAS  Google Scholar 

  27. L.Y. Chen, J.Q. Xu, X.C. Li, Controlling phase growth during solidification by nanoparticles. Mater. Res. Lett. 3, 43–49 (2015). https://doi.org/10.1080/21663831.2014.956264

    Article  CAS  Google Scholar 

  28. K. Wang, H.Y. Jiang, Y.W. Jia, H. Zhou, Q.D. Wang, B. Ye, W.J. Ding, Nanoparticle-inhibited growth of primary aluminum in Al–10Si alloys. Acta Mater. 103, 252–263 (2016). https://doi.org/10.1016/j.actamat.2015.10.005

    Article  CAS  Google Scholar 

  29. N. Srivastava, G.P. Chaudhari, Microstructural evolution and mechanical behavior of ultrasonically synthesized Al6061-nano alumina composites. Mater. Sci. Eng. A 724, 199–207 (2018). https://doi.org/10.1016/j.msea.2018.03.092

    Article  CAS  Google Scholar 

  30. M.T. Azhagan, M. Manoj, G.R. Jinu, Investigation of mechanical characterization, thermal behavior and dielectric properties on Al7075-TiB2 MMC fabricated using stir casting route. Int. J. Metalcast. (2022). https://doi.org/10.1007/s40962-022-00873-y

    Article  Google Scholar 

  31. P.S. Tile, B. Thomas, Effect of load, sliding velocity, and reinforcements on wear characteristics of Al7075-based composite and nanocomposites fabricated by ultrasonic-assisted stir-casting technique. Int. J. Metalcast. (2023). https://doi.org/10.1007/s40962-023-01006-9

    Article  Google Scholar 

  32. Y.F. Han, D. Shu, J. Wang, B.O. Sun, Microstructure and grain refining performance of Al-5Ti-1B master alloy prepared under high-intensity ultrasound. Mater. Sci. Eng. A 430, 326–331 (2006)

    Article  Google Scholar 

  33. M. Estruga, L. Chen, H. Choi, X. Li, S. Jin, Ultrasonic-assisted synthesis of surface-clean TiB2 nanoparticles and their improved dispersion and capture in Al-matrix nanocomposites. ACS Appl. Mater. Interfaces 5, 8813–8819 (2013). https://doi.org/10.1021/am402719p

    Article  CAS  PubMed  Google Scholar 

  34. R. Du, Q. Gao, S. Wu, S. Lü, X. Zhou, Influence of TiB2 particles on aging behavior of in-situ TiB/Al–4.5Cu composites. Mater. Sci. Eng. A 721, 244–250 (2018)

    Article  CAS  Google Scholar 

  35. S. Bahl, L.H. Xiong, L.F. Allard, R.A. Michi, J.D. Poplawsky, A.C. Chuang, D. Singh, T.R. Watkins, D.W. Shin, J.A. Haynes, A. Shyam, Aging behavior and strengthening mechanisms of coarsening resistant metastable θ’ precipitates in an Al–Cu alloy. Mater. Des. 198, 1–12 (2020). https://doi.org/10.1016/j.matdes.2020.109378

    Article  CAS  Google Scholar 

  36. M. Mandal, R. Mitra, Study of dry sliding wear behavior of hot-rolled and mushy-state rolled Al–4.5Cu–5TiB2 in-situ composite with analysis of work hardening and subsurface microstructure-microtexture evolution using EBSD. Metall. Mater. Trans. A 50, 5356–5372 (2019). https://doi.org/10.1007/s11661-019-05406-7

    Article  CAS  Google Scholar 

  37. H. Wang, H. Zhang, Z. Cui, Z. Chen, D. Chen, H. Wang, Investigation on the high-temperature ductility and fracture mechanisms of an in-situ particle reinforced Al matrix composite 7075Al/TiB2. Mater. Sci. Eng. A 764, 1–11 (2019). https://doi.org/10.1016/j.msea.2019.138263

    Article  CAS  Google Scholar 

  38. Q. Yang, Y. Shen, J. Liu, L. Wang, Z. Chen, M.L. Wang, S.Y. Zhong, Y. Wu, H.W. Wang, Microstructure and mechanical response of TiB2/Al–Zn–Mg–Cu composites with more addition of Zn. J. Alloys Compd. 816, 1–11 (2020). https://doi.org/10.1016/j.jallcom.2019.152584

    Article  CAS  Google Scholar 

  39. Q. Gao, S. Wu, S. LÜ, X. Duan, P. An, Preparation of in-situ 5vol% TiB2 particulate reinforced Al–4.5Cu alloy matrix composites assisted by improved mechanical stirring process. Mater. Des. 94, 79–86 (2016). https://doi.org/10.1016/j.matdes.2016.01.023

    Article  CAS  Google Scholar 

  40. S. Mozammil, J. Karloopia, R. Verma, P.K. Jha, Effect of varying TiB2 reinforcement and its ageing behaviour on tensile and hardness properties of in-situ Al–4.5%Cu-xTiB2 composite. J. Alloys Compd. 793, 454–466 (2019). https://doi.org/10.1016/j.jallcom.2019.04.137

    Article  CAS  Google Scholar 

  41. B.W. Zhao, Q. Yang, L. Wu, X.F. Li, M.L. Wang, H.W. Wang, Effects of nanosized particles on microstructure and mechanical properties of an aged in-situ TiB2/Al–Cu–Li composite. Mater. Sci. Eng. A Struct. Mater. Prop. Misrostruct. Process. 742, 573–583 (2019). https://doi.org/10.1016/j.msea.2018.11.032

    Article  CAS  Google Scholar 

  42. S. Yang, R. Zhang, H. Liu, J. Li, H. Yan, Effect of La on microstructure and corrosion behavior of 10%TiB2(p)/Al–5%Cu composites. J. Market. Res. 9(4), 7047–7058 (2020). https://doi.org/10.1016/j.jmrt.2020.05.025

    Article  CAS  Google Scholar 

  43. Y.W. Jia, S.C. Wang, D. Shu, Grain size prediction and investigation of 7055 aluminum alloy inoculated by Al–5Ti–1B master alloy. J. Alloys Compd. 821, 1–11 (2020). https://doi.org/10.1016/j.jallcom.2019.153504

    Article  CAS  Google Scholar 

  44. W.B. Tu, J.G. Tang, L.H. Ma, X. Zhan, J.M. Ni, Study of natural aging behavior of Al–0.4Mg–1.0Si alloy with the addition of Sn at different solution heat treatment temperatures. J. Mater. Res. Technol. 28, 2845–2854 (2024). https://doi.org/10.1016/j.jmrt.2023.12.137

    Article  CAS  Google Scholar 

  45. W.T. Chiu, T. Akama, M. Tahara, T. Inamura, K. Nakamura, H. Hosoda, Aging behaviors of the Al–Cu alloy via ultrasound-promoted thermal treatments. J. Market. Res. 28, 478–489 (2024). https://doi.org/10.1016/j.jmrt.2023.11.253

    Article  CAS  Google Scholar 

  46. H.L. Peng, C. Jin, B.X. Dong, X.J. Zhou, Z. Wang, Y. Shao, H.Y. Yangd, F. Qiu, In-situ tailoring microstructure by directly synthesized TiC–TiB2 nanoparticles to achieve well-balanced strength and ductility in Al–Cu alloy. Mater. Sci. Eng. A 880, 145350 (2023). https://doi.org/10.1016/j.msea.2023.145350

    Article  CAS  Google Scholar 

  47. H.S. Ren, Y.B. Liu, Q. Sun, P. Jin, Y.J. Tao, K.X. Kang, Q.H. Zhang, Q.J. Sun, Promoting strengthening and grain refinement of aluminum alloy during wire and arc additive manufacturing by adding TiB2 particles. Mater. Sci. Eng. A 888, 145805 (2023). https://doi.org/10.1016/j.msea.2023.145805

    Article  CAS  Google Scholar 

  48. X.B. Zhang, J. Sun, M.L. Wang, Y.J. Zhang, N.H. Ma, H.W. Wang, Improvement of yttrium on the hot tearing susceptibility of 6TiB2/Al–5Cu composite. J. Rare Earths 32, 1335–1340 (2015). https://doi.org/10.1016/S1002-0721(14)60566-4

    Article  CAS  Google Scholar 

  49. S.P. Ringer, B.T. Sofyan, K.S. Prasad, G.C. Quan, Precipitation reactions in Al–4.0Cu–0.3Mg (wt%) alloy. Acta Mater. 56, 2147–2160 (2008). https://doi.org/10.1016/j.actamat.2007.12.046

    Article  CAS  Google Scholar 

  50. X. Shen, T. Li, J. Hong, H. Wang. Geng, Effects of TiB2 particles on microstructure and mechanical properties of an in-situ TiB2–Al–Cu–Li matrix composite. Mater. Sci. Eng. A 655, 265–268 (2016). https://doi.org/10.1016/j.msea.2015.12.104

    Article  CAS  Google Scholar 

  51. T. Hong, X. Li, H. Wang, D. Chen, K. Wang, Effects of TiB2 particles on aging behavior of in-situ TiB2/Al–Cu–Mg composites. Mater. Sci. Eng. A 624, 110–117 (2015). https://doi.org/10.1016/j.msea.2014.11.072

    Article  CAS  Google Scholar 

  52. K. Zhao, H. Kang, Y. Wu, M. Liu, E. Guo, Z. Chen, T. Wang, Manipulating the particle distribution of in situ TiB2p/Al composites via acoustic vibration and cooling rate. Mater. Lett. 262, 1–5 (2020). https://doi.org/10.1016/j.matlet.2019.127063

    Article  CAS  Google Scholar 

  53. J.P. Lei, B.W. Lei, K. Zhang, G.L. Liu, Y.Y. Liu, Grain-refining mechanism in hypereutectic Al–20Si alloy with minor Sr–Sc–La and ultrasonic vibration treatment. Heliyon 9(9), 1–9 (2023). https://doi.org/10.1016/j.heliyon.2023.e19272

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude for the financial support from the Natural Science Foundation of China (No. 52204385) and the Natural Science Special Foundation of Guizhou University (No.202330).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiwang Jia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, Y., Shang, X., YunChe et al. The Influence of TiB2 Particles on the Artificial Aging Behavior of TiB2/Al–5Cu Composite. Inter Metalcast (2024). https://doi.org/10.1007/s40962-024-01316-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40962-024-01316-6

Keywords

Navigation