Skip to main content

Advertisement

Log in

Vacuum Stir Cast Developed Aluminium Alloy Hybrid Nanocomposite Performance Compared with Gravity Cast: Mechanical and Tribological Characteristics Study

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

The present investigation is focused on enhancing the characteristics of aluminium alloy (Al6061) hybrid nanocomposites synthesized with constant (5 wt%) weight percentage of graphite (Gr) and 5, 7.5, and 10 wt% of silicon carbide (SiC) nanoparticles (50 nm) via liquid state stir vacuum to die cast process. The physical (actual density, theoretical density, and porosity), microstructural, mechanical (stress-strain and microhardness), and wear performance of Al6061 alloy hybrid nanocomposites were studied, and its results were compared with gravity die-cast developed composite samples. The liquid state stirs vacuum die-cast developed composites to facilitate good mechanical and wear characteristics. Moreover, the composite contained 10 wt% SiC, and 5 wt% Gr (sample 4) offered a low porosity level of 0.72%, higher microhardness of 86 ± 1.1 HV, better yield strength of 118 ± 0.5 MPa, an optimum tensile strength of 147 ± 0.58 MPa, and 3.2 mm strain value. Similarly, the sample 4 composite has higher wear resistance with a low wear rate of 0.321 mg/m and a good coefficient of friction (0.41) at 40 N under 0.75 m/sec.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

Data Availability

All the data required are available within the manuscript

References

  1. R. Arunachalam, P.K. Krishnan, R. Muraliraja, A review on the production of metal matrix composites through stir casting–Furnace design, properties, challenges, and research opportunities. J. Manuf. Process 42, 213–245 (2019). https://doi.org/10.1016/j.jmapro.2019.04.017

    Article  Google Scholar 

  2. S. Das, Development of aluminium alloy composite for engineering applications. Indian Inst Mater 27(4), 325–334 (2004)

    Google Scholar 

  3. S. Manivannan, P. Sakthivel, V. Vijayan, S. Jidesh, The investigation on newly developed of hydrophobic coating on cast AZ91D magnesium alloy under 3.5 wt% NaCl solutions. J Inorg Organomet Polym Mater 32(4), 1246–1258 (2022). https://doi.org/10.1007/s10904-021-02174-z

    Article  CAS  Google Scholar 

  4. V.K. Singh, S. Chauhan, P.C. Gope, A.K. Chaudhary, Enhancement of wettability of aluminium-based silicon carbide reinforced particulate metal matrix composite. High Temp Mater Process (2014). https://doi.org/10.1515/htmp-2014-0043

    Article  Google Scholar 

  5. A.M. Cardinale, D. Maccio, G. Luciano, E. Canepa, P. Traverso, Thermal and corrosion behaviour of as-cast Al-Si alloys with rare earth elements. J. Alloys Compd. (2016). https://doi.org/10.1016/j.jallcom.2016.11.066

    Article  Google Scholar 

  6. A. Ramaswamy, A.V. Perumal, S.J.S. Chelladurai, Investigation on mechanical properties and dry sliding wear characterization of stir cast LM13 aluminium alloy-ZrB2 -TiC particulate hybrid composites. Mater. Res. Express 6(6), 066578 (2019). https://doi.org/10.1088/2053-1591/ab0ef8

    Article  CAS  Google Scholar 

  7. J. Fayomi, A.P.I. Popoola, O.M. Popoola, O.S.I. Fayomi, The Appraisal of the thermal properties, electrical response, and corrosion resistance performance of AA8011 reinforced Nano Si3N4 for automobile application. J. Alloys Compd. 850, 156679 (2021). https://doi.org/10.1016/j.jallcom.2020.156679

    Article  CAS  Google Scholar 

  8. I. Balasubramaniam, R. Maheswaran, Effect of inclusion of SiC particulates on the mechanical resistance behaviour of stir-cast AA6063/SiC composites. Mate. Des. 65, 511–520 (2015). https://doi.org/10.1016/j.matdes.2014.09.067

    Article  CAS  Google Scholar 

  9. H. Kala, K.K.S. Mer, S. Kumar, A review on mechanical and tribological behaviours of stir cast aluminium matrix composites. Procedia Mater Sci 6, 1951–1960 (2014). https://doi.org/10.1016/j.mspro.2014.07.229

    Article  CAS  Google Scholar 

  10. B. Vijay Ramnath, C. Subramanian, Aluminium metal matrix composites-a review. Mater Sci 38, 55–60 (2014)

    Google Scholar 

  11. V. Balaji, N. Sateesh, M.M. Hussain, Manufacture of aluminium metal matrix composite (Al7075-SiC) by stir casting technique. Mat. Today Proc. 2(4–5), 3403–3408 (2015). https://doi.org/10.1016/j.matpr.2015.07.315

    Article  CAS  Google Scholar 

  12. J. Chandradass, T. Thirugnanasambandham, P. Jawahar, T.T.M. Kannan, Effect of silicon carbide and silicon carbide/alumina reinforced aluminium alloy (AA6061) metal matrix composite. Mat. Today: Proc. 2, 143 (2021). https://doi.org/10.1016/j.matpr.2021.02.143

    Article  CAS  Google Scholar 

  13. K. Kalkanli, S. Yilmaz, Synthesis and characterization of aluminium alloy 7075 reinforced with silicon carbide particulates. Mat. Des. 29(4), 775–780 (2008). https://doi.org/10.1016/j.matdes.2007.01.007

    Article  CAS  Google Scholar 

  14. R. Venkatesh, V.S. Rao, Thermal corrosion and wear analysis of copper-based metal matrix composites reinforced with alumina and graphite. Def Technol 14(4), 346–355 (2018). https://doi.org/10.1016/j.dt.2018.05.003

    Article  Google Scholar 

  15. N.K. Chandla, Yashpal., and Jawalkar, C.S., Experimental analysis and mechanical characterization of Al6061/alumina/bagasse ash hybrid reinforced metal matrix composite using vacuum-assisted stir casting method. J. Com. Mat. 54(27), 4283–4297 (2020). https://doi.org/10.1177/00219983209294

    Article  CAS  Google Scholar 

  16. B.R. Kumar, S. Kumar, Fabrication and characterization of 7075 Al alloy reinforced with SiC particulates. Int. J. adv. Mang and tech. 65(2013), 611–624 (2013). https://doi.org/10.1007/s00170-012-4200-6

    Article  Google Scholar 

  17. S. Nanjan, G.M. Janakiram, Characteristics of A6061/ (Glass fiber+Al2O3+SiC+B4C) reinforced hybrid composite prepared through STIR casting. Adv. Mater. Sci. Eng. 6104049, 12 (2019). https://doi.org/10.1155/2019/6104049

    Article  CAS  Google Scholar 

  18. M. Singla, D.D. Dwivedi, L. Singh, V. Chawla, Development of aluminium based silicon carbide particulate metal matrix composite. J Miner Mater Charact Eng 8(6), 455–467 (2009)

    Google Scholar 

  19. I.A. Ibrahim, Metal matrix composites–a review. J. mat. Sci. 26, 1137–1157 (1991)

    Article  CAS  Google Scholar 

  20. A. Mortensen, I. Jin, Solidification processing of metal matrix composites. Int Mater Rev 37, 101–123 (1997)

    Article  Google Scholar 

  21. M.T. Sijo, K.R. Jayadevan, Analysis of stir cast aluminium silicon carbide metal matrix composite: a comprehensive review. Procedia Technol 24, 379–385 (2016)

    Article  Google Scholar 

  22. N.K. Maurya, Investigation of mechanical properties of Al 6061/SiC composite prepared through stir casting technique. Mater Today Proc (2019). https://doi.org/10.1016/j.matpr.2019.09.003

    Article  Google Scholar 

  23. G.B.V. Kumar, Assessment of mechanical and tribological characteristics of Silicon Nitride reinforced aluminium metal matrix composites. Compos Part B Eng 175, 107138 (2019). https://doi.org/10.1016/j.compositesb.2019.107138

    Article  CAS  Google Scholar 

  24. G.B.V. Kumar, Studies on mechanical and dry sliding wear of Al6061–SiC composites. Compos Part B: Eng. 43(3), 1185–1191 (2012)

    Article  Google Scholar 

  25. S. Basavarajappa, G. Chandramohan, S. Ramanathan, A. Chandrasekar, Dry sliding wear behaviour of Al 2219/SiC metal matrix composites. J Mater Eng Perform 15(6), 668–674 (2006)

    Article  CAS  Google Scholar 

  26. N. Raja et al., Microstructural and mechanical properties of in-situ ZrB2/Al7068 nanocomposites synthesized by ultrasonic-assisted stir casting technique. Inter Metalcast (2023). https://doi.org/10.1007/s40962-023-01032-7

    Article  Google Scholar 

  27. N.K. Singh, B. Sethuraman, (2023) "Development and characterization of aluminium AA7075 hybrid composite foams (AHCFs) Using SiC and TiB2 reinforcement. Inter Metalcast (2023). https://doi.org/10.1007/s40962-023-01009-6

    Article  Google Scholar 

  28. P.S. Tile, B. Thomas, Effect of load, sliding velocity, and reinforcements on wear characteristics of Al7075-based composite and nanocomposites fabricated by ultrasonic-assisted stir-casting technique. Inter Metalcast (2023). https://doi.org/10.1007/s40962-023-01006-9

    Article  Google Scholar 

  29. S. Sivalingam et al., Superplastic formability and cavitation analysis of AA7075 matrix composite reinforced with B4C particles produced by stir casting. Inter Metalcast (2023). https://doi.org/10.1007/s40962-022-00932-4

    Article  Google Scholar 

  30. N. Bharat, P.S.C. Bose, "Effect of TiO2 and SiC nanoparticles on the microstructure and mechanical characteristics of AA7178 metal matrix composite. Inter Metalcast (2023). https://doi.org/10.1007/s40962-023-00959-1

    Article  Google Scholar 

  31. G. Kumaresan, B.A. Kumar, Investigations on mechanical and wear properties of Al matrix composites reinforced with hybrid SiC and Al2O3 micro-particles. Inter Metalcast 17, 980–987 (2022). https://doi.org/10.1007/s40962-022-00817-6

    Article  CAS  Google Scholar 

  32. R. Soundararajan et al., Evaluation of microstructures, mechanical and dry-sliding wear performance of A356-(Fly Ash/SiCp) hybrid composites. Inter Metalcast (2022). https://doi.org/10.1007/s40962-021-00731-3

    Article  Google Scholar 

  33. R. Karthick, K. Gopalakrishnan, A. Mohana Krishnan, S. Marimuthu, Influence of stir casting parameters in mechanical strength analysis of aluminium metal matrix composites (AMMCs). Mater. Today: Proc. 62(4), 1965–1968 (2022). https://doi.org/10.1016/j.matpr.2022.02.067

    Article  CAS  Google Scholar 

  34. N. Bharat, P.S.C. Bose, Influence of nano-TiO2 particles on the microstructure, mechanical and wear behaviour of AA7178 alloy matrix fabricated by stir casting technique. Proc. Inst. Mech. (2022). https://doi.org/10.1177/14644207221123520

    Article  Google Scholar 

  35. N. Bharat, P.S.C. Bose, Optimizing the wear behaviour of AA7178 Metal matrix composites reinforced with SiC and TiO2 nanoparticles: a comparative study using evolutionary and statistical methods. SILICON (2023). https://doi.org/10.1007/s12633-023-02395-6

    Article  Google Scholar 

  36. N. Bharat, P.S.C. Bose, Optimization of tribological behaviour of TiO2 nanoparticles reinforced AA7178 alloy matrix using ANN and Taguchi’s methodology. Surf. Topogr. Metrol. Prop. (2022). https://doi.org/10.1088/2051-672X/ac7a55

    Article  Google Scholar 

  37. N. Bharat, P.S.C. Bose, Wear performance analysis and optimization of process parameters of novel AA7178/nTiO2 using ANN-GRA method. Proc Inst Mech (2023). https://doi.org/10.1177/095440892311560

    Article  Google Scholar 

  38. C.R. Kannan, S. Manivannan, M. Vivekanandan, J. Phani Krishna, M. Mezni, S. Islam, S. Rajkumar, Synthesis and experimental investigations of tribological and corrosion performance of AZ61 magnesium alloy hybrid composites. J. Nanomater. 2022, 12 (2022). https://doi.org/10.1155/2022/6012518

    Article  CAS  Google Scholar 

  39. N. Bharat, P.S.C. Bose, "An overview on the effect of reinforcement and wear behaviour of metal matrix composites. Mater. Today Proc. 46(1), 707–713 (2021). https://doi.org/10.1016/j.matpr.2020.12.084

    Article  CAS  Google Scholar 

  40. N. Bharat, P.S.C. Bose, Microstructure, texture, and mechanical properties analysis of novel AA7178/SiC nanocomposites. Ceram. Int. 49(12), 20637–20650 (2023). https://doi.org/10.1016/j.ceramint.2023.03.195

    Article  CAS  Google Scholar 

  41. V. Vijayan, M. Vivekannandan, R. Venkatesh, K. Rajaguru, A.G. Antony, CFD modelling and analysis of a two-phase vapour separator. J. Therm. Anal. Calorim. 145, 2719–2726 (2020). https://doi.org/10.1007/s10973-020-09825-2

    Article  CAS  Google Scholar 

  42. M. Vivekannandan, R. Venkatesh, R. Periyasamy, S. Mohankumar, L. Devekumar, Experimental and CFD investigation of helical coil heat exchanger with flower baffle. Mater. Today: Proc. 37(2), 2174–2182 (2021). https://doi.org/10.1016/j.matpr.2020.07.642

    Article  CAS  Google Scholar 

  43. C. Ramesh Kannan, R. Venkatesh, M. Vivekanandan, Synthesis and characterization of mechanical properties of AA8014+Si3N4/ZrO2 hybrid composites by stir casting process. J. Adv. Mater. Sci. Eng. 2022, 11 (2022)

    Google Scholar 

  44. R. Venkatesh, S. Siva Chandran, Magnesium alloy machining and its methodology: a systematic review and analyses. AIP Conf. Proc. DOI 10(1063/5), 0096398 (2022)

    Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work. No funding was received to assist with the preparation of this manuscript. No funding was received for conducting this study. No funds, grants, or other support were received.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. The first draft of the manuscript was written by RV, and the individual contributions of All authors are given below. AB–formal analysis, investigation, APS–methodology, writing, review & editing, MVDP–investigation, writing& language help, RV–original draft preparation, supervision, and validation. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to A. Baraniraj or R. Venkatesh.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose. The authors have no competing interests to declare relevant to this article’s content. All authors certify that they have no affiliations with or involvement in any organization or entity with any financial or non-financial interest in the subject matter or materials discussed in this manuscript. The authors have no financial or proprietary interests in any material discussed in this article.

Ethics approval

This is an observational study. Vacuum stir cast developed aluminium alloy nanocomposite performance compared with gravity cast: Mechanical and tribological characteristics study, Research Ethics Committee has confirmed that no ethical approval is required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baraniraj, A., Sathiyagnanam, A.P., Venkatesh, R. et al. Vacuum Stir Cast Developed Aluminium Alloy Hybrid Nanocomposite Performance Compared with Gravity Cast: Mechanical and Tribological Characteristics Study. Inter Metalcast 18, 1273–1283 (2024). https://doi.org/10.1007/s40962-023-01119-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-023-01119-1

Keywords

Navigation