Skip to main content
Log in

Effect of Processing Temperature on the Synthesis of In Situ AlSi5Cu3/TiB2 Composites Cast in Metal Mold: Structural and Mechanical Characterizations

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

In the present study, the effect of processing temperature on the characteristics of in situ AlSi5Cu3/TiB2 composites is investigated. The AlSi5Cu3/TiB2 composites were synthesized (using K2TiF6 and KBF4) at three different processing temperatures (750, 800, and 850°C) with constant processing time (60 minutes) and cast into the metal mold. The XRD analysis, microscopic examination, and EDS analysis revealed that only TiB2 particles were present in 800°C processed composites without any intermetallics, whereas, the presence of Al3Ti intermetallics along with TiB2 particles was observed in 750 and 850°C processed composites. In 800°C processed composites, significant grain refinement was occurring owing to the presence of more TiB2 particles acting as nuclei as compared to 750 and 850°C processed composites. Due to the presence of more TiB2 particles and the absence of Al3Ti intermetallics, hardness, tensile strength, compressive strength, impact strength, and flexural strength of 800°C processed composites were improved compared to 750 and 850°C processed composites. Considering microstructural characteristics and mechanical behavior, it was observed that in situ AlSi5Cu3/TiB2 composites were effectively developed at 800°C processing temperature.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. R.P. Barot, R.P. Desai, M.P. Sutaria, Recycling of aluminium matrix composites (AMCs): a review and the way forward. Inter. Metalcast. (2022). https://doi.org/10.1007/s40962-022-00905-7

    Article  Google Scholar 

  2. A. Ramanathan, P.K. Krishnan, R. Muraliraja, A review on the production of metal matrix composites through stir casting–Furnace design, properties, challenges, and research opportunities. J. Manuf. Process. 42, 213–245 (2019). https://doi.org/10.1016/j.jmapro.2019.04.017

    Article  Google Scholar 

  3. S. Poria, P. Sahoo, G. Sutradhar, Tribological characterization of Stir-cast aluminium-TiB2 metal matrix composites. SILICON 8, 591–599 (2016). https://doi.org/10.1007/s12633-016-9437-5

    Article  CAS  Google Scholar 

  4. A. Mandal, B.S. Murty, M. Chakraborty, Wear behaviour of near eutectic Al–Si alloy reinforced with in-situ TiB2 particles. Mater. Sci. Eng. A. 506, 27–33 (2009). https://doi.org/10.1016/j.msea.2008.11.007

    Article  CAS  Google Scholar 

  5. V.S. Ayar, M.P. Sutaria, Comparative evaluation of Ex situ and in situ method of fabricating aluminum/TiB2 composites. Inter. Metalcast. 15, 1047–1056 (2021). https://doi.org/10.1007/s40962-020-00539-7

    Article  CAS  Google Scholar 

  6. S. Suresh, N.S.V. Moorthi, S.C. Vettivel, N. Selvakumar, Mechanical behavior and wear prediction of stir cast Al–TiB2 composites using response surface methodology. Mater. Des. 59, 383–396 (2014). https://doi.org/10.1016/j.matdes.2014.02.053

    Article  CAS  Google Scholar 

  7. Y. Pazhouhanfar, B. Eghbali, Microstructural characterization and mechanical properties of TiB2 reinforced Al6061 matrix composites produced using stir casting process. Mater. Sci. Eng. A. 710, 172–180 (2018). https://doi.org/10.1016/j.msea.2017.10.087

    Article  CAS  Google Scholar 

  8. M.K. Akbari, H.R. Baharvandi, K. Shirvanimoghaddam, Tensile and fracture behavior of nano/micro TiB2 particle reinforced casting A356 aluminum alloy composites. Mater. Des. 66, 150–161 (2015). https://doi.org/10.1016/j.matdes.2014.10.048

    Article  CAS  Google Scholar 

  9. M. Manoj, G.R. Jinu, J.S. Kumar, V. Mugendiran, Effect of TiB2 particles on the morphological, mechanical and corrosion behaviour of Al7075 metal matrix composite produced using stir casting process. Inter. Metalcast. 16, 1517–1532 (2022). https://doi.org/10.1007/s40962-021-00696-3

    Article  CAS  Google Scholar 

  10. D. Dey, A. Biswas, Comparative study of physical, mechanical and tribological properties of Al2024 alloy and SiC–TiB2 composites. SILICON 13, 1895–1906 (2021). https://doi.org/10.1007/s12633-020-00560-9

    Article  CAS  Google Scholar 

  11. S.L. Pramod, S.R. Bakshi, B.S. Murty, Aluminum-based cast in situ composites: a review. J. Mater. Eng. Perform. 24, 2185–2207 (2015). https://doi.org/10.1007/s11665-015-1424-2

    Article  CAS  Google Scholar 

  12. M. Emamy, M. Mahta, J. Rasizadeh, Formation of TiB2 particles during dissolution of TiAl3 in Al–TiB2 metal matrix composite using an in situ technique. Compos. Sci. Technol. 66, 1063–1066 (2006). https://doi.org/10.1016/j.compscitech.2005.04.016

    Article  CAS  Google Scholar 

  13. K.L. Tee, L. Lu, M.O. Lai, In situ stir cast Al–TiB2 composite: processing and mechanical properties. Mater. Sci. Technol. 17, 201–206 (2001). https://doi.org/10.1179/026708301101509863

    Article  CAS  Google Scholar 

  14. B. Yang, Y.Q. Wang, B.L. Zhou, The mechanism of formation of TiB2 particulates prepared by in situ reaction in molten aluminum. Metall. Mater. Trans. B. 29, 635–640 (1998). https://doi.org/10.1007/s11663-998-0098-7

    Article  Google Scholar 

  15. C.S. Ramesh, S. Pramod, R. Keshavamurthy, A study on microstructure and mechanical properties of Al 6061–TiB2 in-situ composites. Mater. Sci. Eng. A. 528, 4125–4132 (2011). https://doi.org/10.1016/j.msea.2011.02.024

    Article  CAS  Google Scholar 

  16. A.M. Samuel, H.W. Doty, S. Valtierra, F.H. Samuel, A metallographic study of grain refining of Sr-modified 356 alloy. Inter. Metalcast. 11, 305–320 (2017). https://doi.org/10.1007/s40962-016-0075-x

    Article  Google Scholar 

  17. A. Changizi, A. Kalkanli, N. Sevinc, Production of in situ aluminum–titanium diboride master alloy formed by slag–metal reaction. J. Alloys Compd. 509, 237–240 (2011). https://doi.org/10.1016/j.jallcom.2010.08.089

    Article  CAS  Google Scholar 

  18. V.S. Ayar, M.P. Sutaria, Development and characterization of in situ AlSi5Cu3/TiB2 composites. Inter. Metalcast. 14, 59–68 (2020). https://doi.org/10.1007/s40962-019-00328-x

    Article  CAS  Google Scholar 

  19. L. Lü, M. Lai, Y. Su, H. Teo, C. Feng, In situ TiB2 reinforced Al alloy composites. Scr. Mater. 45, 1017–1023 (2001). https://doi.org/10.1016/S1359-6462(01)01128-9

    Article  Google Scholar 

  20. B.S. Murty, S.A. Kori, M. Chakraborty, Grain refinement of aluminium and its alloys by heterogeneous nucleation and alloying. Int. Mater. Rev. 47, 3–29 (2002). https://doi.org/10.1179/095066001225001049

    Article  CAS  Google Scholar 

  21. S. Mozammil, J. Karloopia, R. Verma, P.K. Jha, Effect of varying TiB2 reinforcement and its ageing behaviour on tensile and hardness properties of in-situ Al-4.5%Cu-xTiB2 composite. J. Alloys Compd. 793, 454–466 (2019). https://doi.org/10.1016/j.jallcom.2019.04.137

    Article  CAS  Google Scholar 

  22. R.P. Barot, M.P. Sutaria, Effect of casting thickness on mechanical properties of AlSi5Cu3 Aluminium alloy. Mater. Today Proc. 62, 3330–3335 (2022). https://doi.org/10.1016/j.matpr.2022.04.243

    Article  CAS  Google Scholar 

  23. R.P. Barot, M.P. Sutaria, Effect of multiple remelting on behaviour of AlSi5Cu3 Aluminium alloy. Mater. Today Proc. 62, 4046–4051 (2022). https://doi.org/10.1016/j.matpr.2022.04.608

    Article  CAS  Google Scholar 

  24. Y. Zhang, N. Ma, H. Wang, Y. Le, X. Li, Damping capacity of in situ TiB2 particulates reinforced aluminium composites with Ti addition. Mater. Des. 28, 628–632 (2007). https://doi.org/10.1016/j.matdes.2005.07.015

    Article  CAS  Google Scholar 

  25. Z. Chen, T. Wang, Y. Zheng, Y. Zhao, H. Kang, L. Gao, Development of TiB2 reinforced aluminum foundry alloy based in situ composites–Part I: an improved halide salt route to fabricate Al–5 wt%TiB2 master composite. Mater. Sci. Eng. A. 605, 301–309 (2014). https://doi.org/10.1016/j.msea.2014.02.088

    Article  CAS  Google Scholar 

  26. C.F. Feng, L. Froyen, Microstructures of in situ Al/TiB2 MMCs prepared by a casting route. J. Mater. Sci. 35, 837–850 (2000). https://doi.org/10.1023/A:1004729920354

    Article  CAS  Google Scholar 

  27. S. Kumar, M. Chakraborty, V.S. Sarma, B.S. Murty, Tensile and wear behaviour of in situ Al–7Si/TiB2 particulate composites. Wear 265, 134–142 (2008). https://doi.org/10.1016/j.wear.2007.09.007

    Article  CAS  Google Scholar 

  28. G.K. Sigworth, T.A. Kuhn, Grain refinement of aluminum casting alloys. Inter. Metalcast. 1, 31–40 (2007). https://doi.org/10.1007/BF03355416

    Article  CAS  Google Scholar 

  29. H.B.M. Rajan, S. Ramabalan, I. Dinaharan, S.J. Vijay, Synthesis and characterization of in situ formed titanium diboride particulate reinforced AA7075 aluminum alloy cast composites. Mater. Des. 44, 438–445 (2013). https://doi.org/10.1016/j.matdes.2012.08.008

    Article  CAS  Google Scholar 

  30. H.B.M. Rajan, S. Ramabalan, I. Dinaharan, S.J. Vijay, Effect of TiB2 content and temperature on sliding wear behavior of AA7075/TiB2 in situ aluminum cast composites. Arch. Civ. Mech. Eng. 14, 72–79 (2014). https://doi.org/10.1016/j.acme.2013.05.005

    Article  Google Scholar 

  31. Y. Birol, An improved practice to manufacture Al–Ti–B master alloys by reacting halide salts with molten aluminium. J. Alloys Compd. 420, 71–76 (2006). https://doi.org/10.1016/j.jallcom.2005.10.017

    Article  CAS  Google Scholar 

  32. X. Liu, Y. Liu, D. Huang, Q. Han, X. Wang, Tailoring in-situ TiB2 particulates in aluminum matrix composites. Mater. Sci. Eng. A. 705, 55–61 (2017). https://doi.org/10.1016/j.msea.2017.08.047

    Article  CAS  Google Scholar 

  33. N. El-Mahallawy, M.A. Taha, A.E. Jarfors, H. Fredriksson, On the reaction between aluminium, K2TiF6 and KBF4. J. Alloys Compd. 292, 221–229 (1999). https://doi.org/10.1016/S0925-8388(99)00294-7

    Article  CAS  Google Scholar 

  34. T. Wang, Z. Chen, Y. Zheng, Y. Zhao, H. Kang, L. Gao, Development of TiB2 reinforced aluminum foundry alloy based in situ composites–Part II: enhancing the practical aluminum foundry alloys using the improved Al–5 wt%TiB2 master composite upon dilution. Mater. Sci. Eng. A. 605, 22–32 (2014). https://doi.org/10.1016/j.msea.2014.03.021

    Article  CAS  Google Scholar 

  35. Y. Yu, Z. Cao, J. Wang, G. Tu, Y. Mu, Compressive behavior of Al-TiB2 composite foams fabricated under increased pressure. Materials. 14, 5112 (2021). https://doi.org/10.3390/ma14175112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. V. Mohanavel, K.R. Kumar, T. Sathish, P. Velmurugan, A. Karthick, M. Ravichandran, S. Alfarraj, H.S. Almoallim, S.S. Kumar, J.I.J. Lalvani, Investigation on inorganic salts K2TiF6 and KBF4 to develop nanoparticles based TiB2 reinforcement aluminium composites. Bioinorg. Chem. Appl. 2022, 1–13 (2022). https://doi.org/10.1155/2022/8559402

    Article  CAS  Google Scholar 

  37. J.V. Christy, R. Arunachalam, A.H.I. Mourad, P.K. Krishnan, S. Piya, M. Al-Maharbi, Processing, properties, and microstructure of recycled aluminum alloy composites produced through an optimized stir and squeeze casting processes. J. Manuf. Process. 59, 287–301 (2020). https://doi.org/10.1016/j.jmapro.2020.09.067

    Article  Google Scholar 

  38. P.K. Krishnan, J.V. Christy, R. Arunachalam, A.H.I. Mourad, R. Muraliraja, M. Al-Maharbi, V. Murali, M.M. Chandra, Production of aluminum alloy-based metal matrix composites using scrap aluminum alloy and waste materials: influence on microstructure and mechanical properties. J. Alloys Compd. 784, 1047–1061 (2019). https://doi.org/10.1016/j.jallcom.2019.01.115

    Article  CAS  Google Scholar 

  39. E. Samuel, B. Golbahar, A.M. Samuel, H.W. Doty, S. Valtierra, F.H. Samuel, Effect of grain refiner on the tensile and impact properties of Al–Si–Mg cast alloys. Mater. Des. 56, 468–479 (2014). https://doi.org/10.1016/j.matdes.2013.11.058

    Article  CAS  Google Scholar 

  40. X. Zhang, X.Y. Yue, H.Q. Ru, Effect of in-situ synthesized TiB2 on microstructure and mechanical property of Al/TiB2 -SiC interpenetrating phase composites. J. Asian Ceram. Soc. 10, 531–544 (2022). https://doi.org/10.1080/21870764.2022.2082643

    Article  Google Scholar 

  41. T. Wang, Y. Zheng, Z. Chen, Y. Zhao, H. Kang, Effects of Sr on the microstructure and mechanical properties of in situ TiB2 reinforced A356 composite. Mater. Des. 64, 185–193 (2014). https://doi.org/10.1016/j.matdes.2014.07.040

    Article  CAS  Google Scholar 

  42. A. Pineau, A.A. Benzerga, T. Pardoen, Failure of metals I: brittle and ductile fracture. Acta Mater. 107, 424–483 (2016). https://doi.org/10.1016/j.actamat.2015.12.034

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge the support from the Department of Science and Technology (DST), New Delhi, India sponsored SMART Foundry project (DST/TSG/AMT/2015/332 dated 17/08/2016). The authors acknowledge Charotar University of Science and Technology (CHARUSAT) for providing technical support and facilities. The authors are grateful to the editor-in-chief for assigning competitive reviewers to evaluate the manuscript. Moreover, the authors acknowledge the anonymous reviewers for providing comments and suggestions to improve the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

RPB contributed to conceptualization, methodology, experimentation, investigation, data curation, original draft preparation. RPD contributed to conceptualization, analysis, review, editing, supervision. MPS contributed to conceptualization, overall review, editing, supervision.

Corresponding author

Correspondence to M. P. Sutaria.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article. No funding was received for conducting this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barot, R.P., Desai, R.P. & Sutaria, M.P. Effect of Processing Temperature on the Synthesis of In Situ AlSi5Cu3/TiB2 Composites Cast in Metal Mold: Structural and Mechanical Characterizations. Inter Metalcast 18, 915–932 (2024). https://doi.org/10.1007/s40962-023-01067-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-023-01067-w

Keywords

Navigation