Skip to main content
Log in

Understanding the Effect of Be Addition on the Microstructure and Tensile Properties of Al–Si–Mg Cast Alloys

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

While the findings show the benefits of Be to reduce the deleterious effects of Fe-phases, this work does not promote its use. As noted, care must be taken due to the toxic nature of Be to ensure proper ventilation and environmental controls as well as personnel protection are in place. The present work was carried out on a series of heat-treatable aluminum-based aeronautical alloys containing various amounts of magnesium (Mg), iron (Fe), strontium (Sr) and beryllium (Be). The results show that Be (~300–400 ppm) causes partial modification of the eutectic silicon (Si) particles similar to that reported for Mg addition. Addition of 0.8 wt% Mg reduced the eutectic temperature by ~ 10 °C. During solidification of alloys containing high levels of Fe and Mg, without Sr, a peak corresponding to the formation of a Be–Fe phase (Al8Fe2BeSi) was detected at 611 °C, which is close to the formation temperature of α-Al. The Al–Be–Fe phase precipitates in a script-like morphology. Beryllium addition is beneficial in the case of high Fe contents as it lowers the harmful effects of Fe-phases in Al–Si alloys. In the case of high Fe contents, it seems that the addition of 500 ppm of Be is not sufficient for all interactions with other alloying elements. During the melting process, the formation of Be–Sr phase (probably SrBe3O4 compound) decreases the free Be content and hence the alloy mechanical properties. The role of Be in preventing the oxidation of Mg and in changing the chemistry and morphology of the Fe-intermetallics is observed through improved mechanical properties of Be-containing alloys. The partial modification effect of both Mg and Be appears to improve the alloy tensile properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18

Similar content being viewed by others

References

  1. E.L. Rooy, ASM Handbook, Castings, vol. 15, 9th edn. (ASM International, Materials Park, 1992), pp. 743–769

    Google Scholar 

  2. T. Tunçay, S. Bayoğlu, The effect of iron content on microstructure and mechanical properties of A356 cast alloy. Metall. Mater. Trans. B 48, 794–804 (2017). https://doi.org/10.1007/s11663-016-0909-1

    Article  CAS  Google Scholar 

  3. D. Bolibruchová, L. Richtárech, Effect of adding iron to the AlSi7Mg0.3 (EN AC 42 100, A356) alloy. Manuf. Technol. 13, 276–28 (2013)

    Google Scholar 

  4. M.T. Di Giovanni et al., Room temperature mechanical properties of A356 alloy with Ni additions from 0.5 wt to 2 wt %. Metals 8, 224 (2018). https://doi.org/10.3390/met8040224

    Article  CAS  Google Scholar 

  5. O. Elsebaie, A.M. Samuel, F.H. Samuel, Effects of Sr-modification, iron-based intermetallics and aging treatment on the impact toughness of 356 Al–Si–Mg alloy. J. Mater. Sci. 46, 3027–3045 (2011)

    Article  CAS  Google Scholar 

  6. Z. Ma, A.M. Samuel, F.H. Samuel, H.W. Doty, S. Valtierra, Paper 03–101 Effect of Fe content and cooling rate on the impact toughness of cast 319 and 356 aluminum alloys. AFS Trans. 111, 255–266 (2003)

    CAS  Google Scholar 

  7. F. Breton, New high strength 3xx series alloy case study: automotive wheel weight reduction, Paper 19–039. AFS Trans. 127, 183–188 (2019)

    Google Scholar 

  8. J. Shouxun, Y. Wenchao, G. Feng, W. Douglas, F. Zhongyun, Effect of iron on the microstructure and mechanical property of Al–Mg–Si–Mn and Al–Mg–Si die cast alloys. Mater. Sci. Eng. A 564, 130–139 (2013)

    Article  Google Scholar 

  9. J.C. Hebeisen, B.M. Cox, B. Rampulla, HIP of aluminum castings. Adv. Mater. Process. 162(4), 38−40 (2004).

    CAS  Google Scholar 

  10. D. Weiss, K. Weiss, Improving mechanical properties in aluminum through enhanced filtering techniques. AFS Trans. 119, 117–121 (2011)

    CAS  Google Scholar 

  11. Q. Wang, C. Caceres, J. Griffiths, Damage by eutectic particle cracking in aluminum casting alloys A356/357. Metall. Mater. Trans. 34A, 2901–2912 (2003)

    Article  CAS  Google Scholar 

  12. Aluminum Beryllium Master Alloys, http://www.freedomalloyssusa.com.

  13. E.A. Elsharkawi, M.H. Abdelaziz, H.W. Doty et al., Effect of β-Al5FeSi and π-Al8Mg3FeSi6Phases on the impact toughness and fractography of Al–Si–Mg-based alloys. Inter Metalcast 12, 148–163 (2018). https://doi.org/10.1007/s40962-017-0153-8

    Article  Google Scholar 

  14. J. Major, M. Hartlieb, Advances in aluminum foundry alloys for permanent and semi-permanent mold casting. Inter Metalcast 3, 43–53 (2009). https://doi.org/10.1007/BF03355452

    Article  CAS  Google Scholar 

  15. A. Guo, X. Qiu, Z. Ke, et al., Effect of the injection velocity and the electromagnetic stirring on the mechanical properties of a Rheo-Diecast 357 Al alloy. Inter Metalcast (2021). https://doi.org/10.1007/s40962-021-00621-8

    Article  Google Scholar 

  16. R. Fuoco, M. Moreira, Fatigue cracks in aluminum cylinder heads for diesel engines. Inter. Metalcast 4, 19–32 (2010). https://doi.org/10.1007/BF03355500

    Article  CAS  Google Scholar 

  17. W.A. Bailey, Beryllium effect on strength and mechanical properties of 356 variant–T 6 Aluminum alloys. AFS Trans. 72, 443–454 (1964)

    Google Scholar 

  18. E.A. Elsharkawi, A.M. Samuel, F.H. Samuel, E. Simielli, G.K. Sigworth, Influence of solutionizing time, modification, and cooling rate on the decomposition of Mg-containing iron intermetallic phase in 357 alloys. AFS Trans. 120, 55–65 (2012)

    CAS  Google Scholar 

  19. L. Purdon, J.F. Major, T5 aging response of A356/357 hypoeutectic Al–Si foundry alloys under conditions of varying quench rate from the mould. AFS Trans. 121, 461–471 (2004)

    Google Scholar 

  20. F. Breton, A new alloy for automotive wheel weight reduction. Metal Cast. Des. Purch. 2019, 35–38 (2019)

    Google Scholar 

  21. K.J. Oswalt, A. Maloit, A study of the relationship of notch yield ratio and fracture toughness of structural aircraft quality D357 aluminum casting alloy. AFS Trans. 98, 865–877 (1990)

    CAS  Google Scholar 

  22. D. Weiss, Reduced silicon alloys for enhanced casting performance. AFS Trans. 127, 189–193 (2019)

    Google Scholar 

  23. S.S. Sreeja Kumari, R.M. Pillai, T.P.D. Rajan, B.C. Pai, Effect of individual and combined additions of Be, Mn, Ca and Sr on the solidification behavior, structure and mechanical properties of Al–7Si–0.3Mg–0.8Fe alloy. Mater. Sci. Eng. A 460–461, 561–573 (2007)

    Article  Google Scholar 

  24. S. Shivkumar, S. Ricci Jr., B. Steenhoff, D. Apelian, G. Sigworth, An experimental study to optimize the heat treatment of A356 alloy. AFS Trans. 97, 791–810 (1989)

    Google Scholar 

  25. J.A. Taylor, D.H. StJohn, L.H. Zheng, G.A. Edwards, J. Barresi, M.J. Couper, Solution Treatment Effects in Al–Si–Mg Casting Alloys: Part 1–intermetallic phases. Alumin. Trans. 45, 95–110 (2001)

    Google Scholar 

  26. P.A. Burr, S.C. Middleburgh, R.W. Grimes, Crystal structure, thermodynamics, magnetics and disorder properties of Be–Fe–Al intermetallics. J. Alloys Compd. 639, 111–122 (2014). https://doi.org/10.1016/j.jallcom.2015.03.101

    Article  CAS  Google Scholar 

  27. G.V. Raynor, G.R. Faulkner, J.D. Noden, A.R. Harding, Ternary alloys formed by aluminium, transitional metals and divalent metals. Acta Metall. 1, 629–648 (1953)

    Article  CAS  Google Scholar 

  28. P.J. Black, The structure of T(AlFeBe). Acta Crystallogr. 8, 39–42 (1955)

    Article  CAS  Google Scholar 

  29. M. Drouzy, S. Jacob, M. Richard, Interpretation of tensile results by means of quality index and probable yield strength. AFS Int. Cast Metals J. 5, 43–50 (1980)

    CAS  Google Scholar 

  30. S. Jacob, Quality index in predicting of properties of aluminum castings—a review. AFS Trans. 108, 811–818 (2000)

    CAS  Google Scholar 

  31. S.L. Bäckerud, G. Chai, J. Tamminen, Solidification Characteristics of Aluminum Alloys, Vol. 2 Foundry Alloys (AFS/Skanaluminium, Oslo, 1990)

    Google Scholar 

  32. S. Murali, K.S. Raman, K.S.S. Murthy, The formation of β-phase and Be–Fe phases in Al–7Si–0.3Mg alloy containing Be. Mater. Sci. Eng. A 190, 165–172 (1995)

    Article  Google Scholar 

  33. E.A. Elsharkawi, Effect of Metallurgical Parameters on the Decomposition of the π-AlFeMgSi Phase in Al–Si–Mg Alloys and its Influence on the Mechanical Properties, Ph.D. Thesis, Université du Québec à Chicoutimi, Chicoutimi, Quebec, Canada (2011).

  34. F.H. Samuel, P. Ouellet, A.M. Samuel, H.W. Doty, Effect of Mg and Sr additions on the formation of intermetallics in Al-6 Wt Pet Si-3.5 Wt Pet Cu-(0.45) to (0.8) Wt Pet Fe 319-type alloys. Metall. Mater. Trans. A. 29A, 2871–2884 (1998)

    Article  CAS  Google Scholar 

  35. D. Apelian, S.K. Chaudhury, Heat Treatment of Aluminum Cast Components: Recent Developments and Future Challenges (WFO Technical Forum, St. Louis, 2005)

    Google Scholar 

  36. L.A. Narayanan, F.H. Samuel, J.E. Gruzleski, Dissolution of iron intermetallics in Al–Si alloys through nonequilibrium heat treatment. Metall. Mater. Trans. A. 26A, 2161–2174 (1995)

    Article  CAS  Google Scholar 

  37. M. Tiryakioğlu, J.T. Staley, J. Campbell, Evaluating structural integrity of cast Al–7%Si–Mg alloys via work hardening characteristics: II. A new quality index. Mater. Sci. Eng. A 368, 231–238 (2004)

    Article  Google Scholar 

  38. C.Y. Yang, S.L. Lee, C.K. Lee, J.C. Lin, Effect of Be and Fe on the mechanical and corrosion behaviour of A357 alloys. Mater. Chem. Phys. 93, 412–419 (2005)

    Article  CAS  Google Scholar 

  39. D. Apelian, S. Shivkumar, G. Sigworth, Fundamental aspects of heat treatment of cast Al–Si–Mg alloys. AFS Trans. 97, 727–742 (1989)

    Google Scholar 

  40. J.A. Taylor, D.H. StJohn Barresi, M.J. Couper, Influence of Mg content on the microstructure and solid solution chemistry of Al–7Si–Mg casting alloys during solution treatment. Mater. Sci. Forum 331–337, 277–282 (2000)

    Article  Google Scholar 

  41. Y. Wang, Y. Xiong, Effects of beryllium in Al–Si–Mg-Ti alloy. Mater. Sci. Eng. A 280(1), 124–127 (2000)

    Article  Google Scholar 

  42. S. Murali, A. Trivedi, K.S. Shamanna, K.S.S. Murthy, Effect of iron and combined iron and beryllium addition on the fracture toughness and microstructures of squeeze-cast Al–7Si–0.3Mg alloy. J. Mater. Eng. Perform. 5(4), 462–468 (1996)

    Article  CAS  Google Scholar 

  43. Z. Lin, Z. Wang, H. Yang, C. Chen, M. Lee, Mechanism for linear and nonlinear optical effects in SrBe3O4 crystal. J. Chem. Phys. 117(6), 2809 (2002)

    Article  CAS  Google Scholar 

  44. H. Möller, G. Govender, W.E. Stumpf, R.D. Knutsen, Influence of temper condition on microstructure and mechanical properties of semisolid metal processed Al–Si–Mg Alloy A356. Int. J. Cast Met. Res. 22(6), 417–421 (2009)

    Article  Google Scholar 

  45. M. Abdulwahab, I.A. Madugu, S.A. Yaro, S.B. Hassan, A.P.I. Popoola, Effects of multiple-step thermal aging treatment on the hardness characteristics of A356.0-type Al–Si–Mg alloy. Mater. Des. 32, 1160–1165 (2011)

    Article  Google Scholar 

  46. N.D. Alexopoulos, M. Tiryakioglu, Relationship between fracture toughness and tensile properties of A357 cast aluminum alloy. Metall. Mater. Trans. A 40A, 702–716 (2009)

    Article  CAS  Google Scholar 

  47. A. Morri, Empirical models of mechanical behaviour of Al–Si–Mg cast alloys for high performance engine applications. Metall. Sci. Technol. 28(2), 2–8 (2010)

    CAS  Google Scholar 

  48. E. Alibeiki, J. Rajabi, J. Rajabi, Prediction of mechanical properties of the heat treatment by artificial neural networks. J. Asian Sci. Res. 2(11), 742–746 (2012)

    Google Scholar 

  49. H.R. Ammar, A.M. Samuel, F.H. Samuel, E. Simielli, G.K. Sigworth, J.C. Lin, Influence of aging parameters on the tensile properties and quality index of Al–9 Pct Si–1.8 Pct Cu–0.5 Pct Mg 354-type casting alloys. Metall. Mater. Trans. A 43(1), 61–73 (2012). https://doi.org/10.1007/s11661-011-0808-7

    Article  CAS  Google Scholar 

  50. P.W. Voorhees, G.B. McFadden, R.F. Boisvert, Numerical Simulation of Morphological Development during Ostwald Ripening. Acta Metall. 36(1), 207–222 (1988)

    Article  CAS  Google Scholar 

  51. A.K. Gupta, D.J. Lloyd, S.A. Court, Precipitation hardening in Al–Mg–Si alloys with and without excess Si. Mater. Sci. Eng. A 316, 11–17 (2001)

    Article  Google Scholar 

  52. J.R. Davis, Aluminum and Aluminum Alloys (ASM International, Geauga County, 2006). ISBN: 978-0-87170-496-2

    Google Scholar 

  53. A. Gaber, M.A. Gaffar, M.S. Mostafa, E.F.A. Zeid, Precipitation kinetics of Al–1.12 Mg2Si–0.35 Si and Al–1.07 Mg2Si–0.33 Cu alloys. J. Alloys Compd. 429, 167–175 (2007)

    Article  CAS  Google Scholar 

  54. M. Vončin’, J. Medved, S. Kores, et al., Precipitation microstructure in Al–Si–Mg–Mn alloy with Zr additions. Mater. Charact. 155, 109820 (2019)

    Article  Google Scholar 

  55. W.D. Callister, D.G. Rethwisch, Fundamentals of Materials Science and Engineering: An Integrated Approach, vol. 2012 (Wiley, New York, 2012)

    Google Scholar 

  56. G. Asghar, L. Peng, P. Fu, L. Yuan, Y. Liu, Role of Mg2Si precipitates size in determining the ductility of A357 cast alloy. Materials & Design 186, 108280 (2020)

    Article  CAS  Google Scholar 

  57. Y. Ohmori, L.C. Doan, K. Nakai, Ageing processes in Al–Mg–Si alloys during continuous heating. Mater. Trans. 43(2), 246–255 (2002)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Amal Samuel for enhancing the quality of the used artwork.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. H. Samuel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elsharkawi, E.A., Ibrahim, M.F., Samuel, A.M. et al. Understanding the Effect of Be Addition on the Microstructure and Tensile Properties of Al–Si–Mg Cast Alloys. Inter Metalcast 16, 1777–1795 (2022). https://doi.org/10.1007/s40962-021-00715-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-021-00715-3

Keywords

Navigation