Skip to main content

Advertisement

Log in

Novel Approach for Using Ductile Iron as Substrate in Bimetallic Materials for Higher Interfacial Bonding Bearings

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

A Correction to this article was published on 20 August 2021

This article has been updated

Abstract

The Sn-based Babbitt and ductile iron bimetallic composites were fabricated by liquid–solid compound casting process. The Sn-based Babbitt alloy was melted in an electrical furnace and then poured into a mould containing ductile iron solid substrate. Different pre-treatment conditions for ductile iron surface using grinding, polishing and normalizing heat treatment were applied before tinning process for the aim of surface graphite decarburization. Such kind of approach can be considered as a promising way allowing using ductile iron as a substrate in the manufacturing of bimetallic materials. The results of the experiments show that only 40% of interfacial bonding area was achieved by the grinding and polishing (for 10 min) of ductile iron substrate, whereas, by the normalizing heat treatment of ductile iron substrate at 850 °C for 25 min (along with grinding and polishing), an increasing of the interfacial bonding area of 85% was achieved. All these variations can be attributed to the relatively higher percentage of surface graphite decarburization under controlled conditions of heat treatment and substrate preparation. The test of shear stress value of the bimetal with normalized ductile iron substrate is significantly higher (9.5 ± 0.48 MPa) than that of bimetal with grinded–polished ductile iron substrate (5.5 ± 0.28). Furthermore, Babbitt/ductile iron bimetallic specimens fabricated under these certain conditions of grinding and normalizing demonstrates a relatively higher interfacial hardness level (42 ± 2.1 HV). It can be reported that the lower value of free carbon in bimetal interface of normalized ductile iron substrate improves the interfacial bonding area and the elements diffusion and consequently, leads to increasing the microhardness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Similar content being viewed by others

Change history

References

  1. B.S. Unlu (2009) Investigation of tribological and mechanical properties of metal bearings. Bull. Mater. Sci. 32(4): 451–457. https://www.ias.ac.in/article/fulltext/boms/032/04/0451-0457

  2. H.R. Wu, Q.L. Bi, S.Y. Zhu, J. Yang, W.M. Liu, Friction and wear properties of babbitt alloy 16–16-2 under sea water environment. Tribol. Int. 44, 1161–1167 (2011). https://doi.org/10.1016/j.triboint.2011.05.007

    Article  CAS  Google Scholar 

  3. A.K. Valeeva, I.S. Valeev, R.F. Fazlyakhmetov, Effect of structure of B83 babbit on its wear. J Frict. Wear. 35, 311–315 (2014). https://doi.org/10.3103/S1068366614040138

    Article  Google Scholar 

  4. F.A. Sadykov, N.P. Barykin, I.S. Valeev, V.N. Danilenko, Influence of the structural state on mechanical behavior of tin babbit. J. Mater. Eng. Perform. 12(1), 29–36 (2003). https://doi.org/10.1361/105994903770343448

    Article  CAS  Google Scholar 

  5. M. Ramadan, K.M. Hafez (2021) Interfacial microstructure and hardness of Sn-Based Babbitt/C93700 Cu- Pb-Sn bimetallic materials. Materials Today (In press) https://doi.org/10.1016/j.matpr.2021.01.581

  6. X. Ji, Y. Chen, Tribological behavior of babbitt alloy rubbing against Si3N4 and steel under dry friction condition. J. Mater. Eng. Perform. 25(3), 750–755 (2016). https://doi.org/10.1007/s11665-016-1893-y

    Article  CAS  Google Scholar 

  7. P. Diouf, A. Jones, Investigation of bond strength in centrifugal lining of babbitt on cast iron. Metall. and Mater. Trans. A 41, 603–609 (2010). https://doi.org/10.1007/s11661-009-0112-y

    Article  CAS  Google Scholar 

  8. N. Fathy, M. Ramadan (2018) Influence of volume ratio of liquid to solid and low pouring temperature on interface structure of cast Babbitt-steel bimetal composite. In: AIP conference proceedings 1996, p 020028 https://doi.org/10.1063/1.5038707

  9. N. Fathy, Interface microstructure investigation of babbitt-carbon steel composite using flux with glycerol and petroleum jelly additives. Eng. Technol. Appl. Sci. Res. 8(3), 3028–3031 (2018). https://doi.org/10.48084/etasr.2071

    Article  Google Scholar 

  10. M. Ramadan, A.S. Alghamdi, T. Subhani, K.S. Abdel Halim, Fabrication and characterization of Sn-based babbitt alloy nanocomposite reinforced with Al2O3 nanoparticles/carbon steel bimetallic material. Materials (2020). https://doi.org/10.3390/ma13122759

    Article  Google Scholar 

  11. S. Manasijević, R. Radiša, Z.Z. Brodarac et al., Al-Fin bond in aluminum piston alloy & austenitic cast iron insert. Int. J. Metalcast. 9, 27–32 (2015). https://doi.org/10.1007/BF03356037

    Article  Google Scholar 

  12. M. Ramadan, N. Fathy, K.S. Abdel Halim, A.S. Alghamdi, New trends and advances in bi-metal casting technologies. Int. J. Adv. Appl. Sci. 6(2), 75–80 (2019). https://doi.org/10.21833/ijaas.2019.02.011

    Article  Google Scholar 

  13. J. Gawronski, J. Szajnar, P. Wróbel, Study on theoretical bases of receiving composite alloy layers on surface of cast steel castings. J. Mater. Process. Technol. 157–158, 679–682 (2004). https://doi.org/10.1016/j.jmatprotec.2004.07.153

    Article  CAS  Google Scholar 

  14. M. Ramadan, B. Ayadi, W. Rajhi, A.S. Alghamdi, Influence of tinning material on interfacial microstructures and mechanical properties of Al12Sn4Si1Cu/Carbon steel bimetallic castings for bearing applications. Key Eng. Mater. 835, 108–114 (2020)

    Article  Google Scholar 

  15. A.O. Bakke, J.O. Løland, S. Jørgensen et al., Interfacial microstructure formation in Al7SiMg/Cu compound castings. Int. J. Metalcast. 15, 40–48 (2021). https://doi.org/10.1007/s40962-020-00463-w

    Article  CAS  Google Scholar 

  16. T. Vossel, N. Wolff, B. Pustal et al., Influence of die temperature control on solidification and the casting process. Int. J. Metalcast. 14, 907–925 (2020). https://doi.org/10.1007/s40962-019-00391-4

    Article  CAS  Google Scholar 

  17. M. Pintore, O. Starykov, T. Mittler et al., Experimental investigations on the influence of the thermal conditions during composite casting on the microstructure of Cu–Al bilayer compounds. Int. J. Metalcast. 12, 79–88 (2018). https://doi.org/10.1007/s40962-017-0140-0

    Article  Google Scholar 

  18. R.K. Tayal, S. Kumar, V. Singh et al., Characterization and microhardness evaluation of A356/Mg joint produced by vacuum-assisted sand mold compound casting process. Int. J. Metalcast. 13, 392–406 (2019). https://doi.org/10.1007/s40962-018-0264-x

    Article  CAS  Google Scholar 

  19. R.K. Tayal, S. Kumar, V. Singh et al., Experimental investigation and evaluation of joint strength of A356/Mg bimetallic fabricated using compound casting process. Int. J. Metalcast. 13, 686–699 (2019). https://doi.org/10.1007/s40962-018-0288-2

    Article  CAS  Google Scholar 

  20. M. Cholewa, T. Wróbel, S. Tenerowicz, Bimetallic layer castings. J. Achiev. Mater. Manuf. Eng. 43(1), 385–391 (2010)

    Google Scholar 

  21. M. Ramadan, Interface characterization of bimetallic casting with a 304 stainless steel surface layer and a gray cast iron base. Adv. Mater. Res. 1120–1121, 993–998 (2015)

    Article  Google Scholar 

  22. ASM Handbook (1992), V.15 Casting, ASM International

  23. G. S. Cho, K. H. Choe, K. W. Lee, A. Ikenaga (2007) J. Mater. Sci. Technol. 23(01): 97–101. https://www.jmst.org/EN/Y2007/V23/I01/97

  24. A. R. Ghaderi, M. Nili Ahmadabadi, H. M. Ghasemi (2003) Wear 225(1–6): 410–416 https://doi.org/10.1016/S0043-1648(03)00156-X

  25. M. Hatate, T. Shoita, N. Takahashi, K. Shimizu, Wear 251(1–12), 885–889 (2001). https://doi.org/10.1016/S0043-1648(01)00746-3

    Article  Google Scholar 

  26. Z. Guo, M. Liu, X. Bian, M. Liu, J. Li, An Al–7Si alloy/cast iron bimetallic composite with super-high shear strength. J. Mater. Res. Technol. 9(3), 3126–3136 (2019). https://doi.org/10.1016/j.jmrt.2017.06.014

    Article  CAS  Google Scholar 

  27. C.M. Taylor (1993) Lubrication regimes and the internal combustion. Engine Tribology 26: 75–87 https://doi.org/10.1016/S0167-8922(08)70008-7

  28. H. He, Z. Zhao, T. Luo, X. Lu, J. Luo, Failure analysis of journal bearing used in turboset of a power plant. Mater Des 52, 923–931 (2013). https://doi.org/10.1016/j.matdes.2013.06.027

    Article  CAS  Google Scholar 

  29. ASM Metals Handbook, vol. 01—Properties and selection—Irons, steels and high-performance alloys (1990)

  30. L. Morais, L.A. Ferreira, Journal bearings optimization for mass balancing systems used in internal combustion engines. Ind. Lubr. Tribol. 58(6), 295–302 (2006). https://doi.org/10.1108/0036879061069137

    Article  Google Scholar 

  31. Y.S. Lerner, Wear resistance of ductile irons. J. Mater. Eng. Perform. 3, 403–408 (1994). https://doi.org/10.1007/BF02645338

    Article  CAS  Google Scholar 

  32. ASM Handbook, vol. 4, Heat treatment, ASM International (1991)

  33. M. Ramadan, T. Subhani, W. Rajhi, B. Ayadi, A. S. Al-Ghamdi (2020) A novel technique to prepare cast Al-bearing alloy/wrought steel bimetallic specimen for interfacial shear strength. Int. J. Eng. Adv. Technol. (IJEAT) https://doi.org/10.35940/ijeat.C6084.029320

  34. M. Ramadan, A.S. Alghamdi, K.M. Hafez, T. Subhani, K.S. Abdel Halim, Development and optimization of tin/flux mixture for direct tinning and interfacial bonding in aluminum/steel bimetallic compound casting. Materials 13(24), 5642 (2020). https://doi.org/10.3390/ma13245642

    Article  CAS  Google Scholar 

  35. J. Shin, T. Kim, K. Lim, H. Cho, G. Yang, C. Jeong, S. Yi, Effects of steel type and sand blasting pretreatment on the solid-liquid compound casting characteristics of zinc-coated steel/aluminum bimetals. J. Alloy. Compd. 778, 170–185 (2019). https://doi.org/10.1016/j.jallcom.2018.11.134

    Article  CAS  Google Scholar 

  36. R.R. Dean, C.J. Evans, Plain bearing materials: the role of tin. Tribol. Int. 9, 101–108 (1976). https://doi.org/10.1016/0301-679X(76)90032-3

    Article  CAS  Google Scholar 

  37. G.C. Pratt, Materials for plain bearings. Int. Metall. Rev. 18, 62–88 (1973). https://doi.org/10.1179/imtlr.1973.18.2.62

    Article  CAS  Google Scholar 

  38. M. Goudarzi, S.A. Jahromi, A. Nazarboland, Investigation of characteristics of tin-based white metals as a bearing material. Mater. Des. 30(6), 2283–2288 (2009). https://doi.org/10.1016/j.matdes.2008.07.056

    Article  CAS  Google Scholar 

  39. Z. Wang, X. Zhang, F. Xu, K. Qian, K. Chen, Effect of nodularity on mechanical properties and fracture of ferritic spheroidal graphite iron. China Foundry 16(6), 386–392 (2019). https://doi.org/10.1007/s41230-019-9080-z

    Article  CAS  Google Scholar 

  40. Y. Yamaguchi, S. Kiguchi, H. Sumimoto, K. Nakamura, Effect of graphite morphology on decarburized cast iron. Int. J. Cast Met. Res. 16(1–3), 137–142 (2003). https://doi.org/10.1080/13640461.2003.11819572

    Article  CAS  Google Scholar 

  41. P.H. Dionisio, B.A. de Barros Jr, I.J. Baumvol, Intermetallic phases formed during tin implantation into iron and steels. J. Appl. Phys. 55(12), 4219–4224 (1984). https://doi.org/10.1063/1.333022

    Article  CAS  Google Scholar 

  42. G. Rzepka, J. Nawrocki, J. Sieniawski, Decarbonizing of ductile cast iron surface for usage in two-layered casting. Adv. Manuf. Sci. Technol. 44(4), 113–120 (2020). https://doi.org/10.2478/amst-2019-0018AMST

    Article  Google Scholar 

Download references

Acknowledgements

This research has been funded by Scientific Research Deanship at University of Ha’il—Saudi Arabia through project number RG-20074

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Abdel Halim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: K. M. Hafez's affiliation was corrected.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramadan, M., Hafez, K.M., Alghamdi, A.S. et al. Novel Approach for Using Ductile Iron as Substrate in Bimetallic Materials for Higher Interfacial Bonding Bearings. Inter Metalcast 16, 987–1000 (2022). https://doi.org/10.1007/s40962-021-00653-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-021-00653-0

Keywords

Navigation