Skip to main content
Log in

Investigating the Tribological Behavior of Aluminum Alloys Produced by a Novel Method: Gas-Induced Semi-Solid (GISS) Casting Technology

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

A Correction to this article was published on 11 June 2021

This article has been updated

Abstract

Aluminum alloys are becoming widely preferred in the automotive industry due to their high specific strength-to-weight ratios. Among these aluminum cast alloys, those with high-silicon content can offer a unique combination of mechanical and better wear properties. In this study, EN AC 46000 (AlSi9Cu3(Fe)), 48000 (AlSi12CuNiMg), and 48100 (AlSi17Cu4Mg) aluminum alloys are produced using high-pressure die casting and gas-induced semi-solid (GISS)-adapted technologies. The effects of GISS adaption on the microstructure and tribological behavior are investigated. The lower casting temperatures and formation of solid particles in the melt by GISS adaption were found to improve the die filling and reduced porosity. This leads to higher hardness and improved wear resistance. Among the six casts investigated, the one with GISS-adapted 48100 (AlSi17Cu4Mg) alloy showed the highest hardness and highest abrasion of the cast iron pin during tribological tests. The enhanced properties are assumed to be the result of its unique microstructure formed due to its high-silicon and copper contents, as well as the decreased microporosity due to the GISS (gas-induced semi-solid) adaption approach.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Change history

References

  1. J.G. Kaufman, E.L. Rooy, Aluminum Alloy Casting: Properties, Processes and Applications (ASM International, Materials Park, 2004).

    Book  Google Scholar 

  2. S. Rana, R. Purohtit, S. Das, Int. J. Sci. Res. Pub. 2, 6 (2012)

    Google Scholar 

  3. M. Warmuzek, Aluminium-Silicon Casting Alloys: Atlas of Microfractographs (ASM International, Materials Park, 2004).

    Google Scholar 

  4. B.S. Shabel, D.A. Granger, W.G. Truckner, Friction and wear of aluminum-silicon alloys, in in ASM handbook: friction, lubrication, and wear technology. ed. by P.J. Blau (ASM International, Ohio, 1992), pp. 785–794

    Google Scholar 

  5. Process for preparing molten metals for casting at a low to zero superheat temperature.” International Publication Number: PCT/TH2014/000025; Inventors: Wannasin, Jessada; Flemings, Merton C

  6. R. Canyook, S. Petsut, S. Wisutmethangoon, M.C. Flemings, J. Wannasin, Trans. Nonferr. Met. Soc. China 20, 1649 (2010)

    Article  CAS  Google Scholar 

  7. J. Wannasin, S. Janudom, T. Rattanochaikul, M. Flemings, Solid State Phenom. 141, 97 (2008)

    Article  Google Scholar 

  8. T. Rattanochaikul, S. Janudom, N. Memongkol, J. Wannasin, Trans. Nonferr. Met. Soc. China 20, 1763 (2010)

    Article  CAS  Google Scholar 

  9. J. Jayaraj, E. Fleury, K.B. Kim, J.C. Lee, Met. Mater. Int. 11(3), 257 (2005)

    Article  CAS  Google Scholar 

  10. S.G. Shabestari, M. Honarmand, H. Saghafian, Adv. Mater. Process. Technol. 1, 155 (2015)

    Google Scholar 

  11. J. Zhao, S. Wu, Trans. Nonferr. Met. Soc. China 20, 754 (2010)

    Article  Google Scholar 

  12. I. Dumanić, S. Jozić, D. Bajić et al., Optimization of semi-solid high-pressure die casting process by computer simulation, Taguchi method and grey relational analysis. Inter Metalcast (2021). https://doi.org/10.1007/s40962-020-00422-5

    Article  Google Scholar 

  13. O. Bustos, S. Ordoñez, R. Colás, Rheological and microstructural study of A356 alloy solidified under magnetic stirring. Inter Metalcast 7, 29–37 (2013). https://doi.org/10.1007/BF03355542

    Article  CAS  Google Scholar 

  14. L. Lasa, J.M. Rodriguez-Ibabe, Scr. Mater. 46, 477 (2002)

    Article  CAS  Google Scholar 

  15. L. Lasa, J.M. Rodriguez-Ibabe, Mater. Sci. Eng: A 363, 193 (2003)

    Article  Google Scholar 

  16. D.K. Dwivedi, Mater. Des. 31, 2517 (2010)

    Article  CAS  Google Scholar 

  17. D.K. Dwivedi, Mater. Sci. Eng A 382, 328 (2004)

    Article  Google Scholar 

  18. M. Chen, A.T. Alpas, Wear 265, 186 (2008)

    Article  CAS  Google Scholar 

  19. D.E. Lozano, R.D. Mercado-Solis, A.J. Perez, J. Talamantes, F. Morales, M.A.L. Hernandez-Rodriguez, Wear 267, 545 (2009)

    Article  CAS  Google Scholar 

  20. M. Modigell, A. Pola, M. Tocci, Metals 8, 245 (2018)

    Article  Google Scholar 

  21. A. Pola, M. Tocci, P. Kapranos, Metals 8, 181 (2018)

    Article  Google Scholar 

  22. T. Yong Liu, Rheology of semisolid alloys under rapid change in shear rate, Ph.D. Thesis, The University of Sheffield, (2002)

  23. I. Outmani, L. Fouilland-paille, J. Isselin, M. El Mansori, J. Mater. Process. Technol. 249, 559 (2017)

    Article  CAS  Google Scholar 

  24. S. Wisutmethangoon, S. Thongjan, N. Mahathaninwong, T. Plookphol, J. Wannasin, Mater. Sci. Eng A 532, 610 (2012)

    Article  CAS  Google Scholar 

  25. A. Sinha, M.A. Islam, Z. Farhat, Int. J. Metal. Mater. Eng. 1, 117 (2015)

    Google Scholar 

  26. S. Janudom, T. Rattanochaikul, R. Burapa, S. Wisutmethangoon, J. Wannasin, Trans. Nonferrous Metals Soc. China 20, 1756 (2010)

    Article  CAS  Google Scholar 

  27. Y.B. Suslu, M.S. Acar, M. Senol, M. Mutlu, O. Keles, Light metals 2018, in The minerals, metals and materials series. ed. by O. Martin (Springer, Cham, 2018)

    Google Scholar 

  28. S. Hegde, K.N. Prabhu, J. Mater. Sci. 43, 3009 (2008)

    Article  CAS  Google Scholar 

  29. A. Vencl, I. Bobic, Z. Miskovi, Wear 264, 616 (2008)

    Article  CAS  Google Scholar 

  30. M. Elmadagli, T. Perry, A.T. Alpas, Wear 262, 79 (2007)

    Article  CAS  Google Scholar 

  31. F. Alshmri, H.V. Atkinson, S.V. Hainsworth, C. Haidon, S.D.A. Lawes, Wear 313, 106 (2014)

    Article  CAS  Google Scholar 

  32. P. Kumar, M.F. Wani, J. Tribol. 15, 21 (2017)

    Google Scholar 

  33. A.K. Dey, P. Poddar, K.K. Singh, K.L. Sahoo, Mater. Sci. Eng A 435, 521 (2006)

    Article  Google Scholar 

  34. C.L. Xu, Y.F. Yang, H.Y. Wang, Q.C. Jiang, J. Mater. Sci. 42, 6331 (2007)

    Article  CAS  Google Scholar 

  35. K.B. Shah, S. Kumar, D.K. Dwivedi, Mater. Des. 28, 1968 (2007)

    Article  CAS  Google Scholar 

  36. R. Sharma, D.K. Dwivedi, Mater. Des. 28, 1975 (2007)

    Article  CAS  Google Scholar 

  37. D. Culliton, A.J. Betts, D. Kennedy, Int. J. Cast Metals Res. 26, 65 (2013)

    Article  CAS  Google Scholar 

  38. H. Hasırcı, J. Polytech. 18, 7 (2014)

    Google Scholar 

  39. J. Clarke, A.D. Sarkar, Wear 54, 7 (1979)

    Article  CAS  Google Scholar 

  40. R. Shivanath, P.K. Sengupta, T.S. Eyre, Br. Foundrym. 70, 349 (1977)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Mita Kalıp ve Dokum San. A.S. and Y. Berk Suslu for their help with casting process.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alper Yesilcubuk or Ozgul Keles.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: Alper Yesilcubuk was added as a corresponding author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tezgel, Y., Tunc, I., Kaya, O. et al. Investigating the Tribological Behavior of Aluminum Alloys Produced by a Novel Method: Gas-Induced Semi-Solid (GISS) Casting Technology. Inter Metalcast 16, 458–472 (2022). https://doi.org/10.1007/s40962-021-00619-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-021-00619-2

Keywords

Navigation