Skip to main content

Advertisement

Log in

The effect of squeeze casting process on the microstructure, mechanical properties and wear properties of hypereutectic Al–Si–Cu–Mg alloy

  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

The effects of the squeeze casting process on the microstructure, mechanical properties and wear characteristics of hypereutectic Al–Si–Cu–Mg alloys have been investigated by optical, scanning and transmission electron microscopy and mechanical property test; the wear behaviour was investigated using a pin-on-disc configuration; alloy ingots were prepared by gravity casting, liquid squeeze casting and semisolid squeeze casting. The results show that the Si phase was refined and the α-Al dendrites transformed to rosette grains after semisolid squeeze casting. The peak intensity of the second phase decreased after extrusion, indicating that extrusion promotes the dissolution of solute elements into the matrix. Among the three casting processes, the alloys formed by semisolid squeeze casting had the best mechanical properties. Tensile strength, elongation and Brinell hardness reached 187.67 MPa, 2.33% and 142.5 HB, respectively. After semisolid squeeze casting, the morphology of the wear surface was flat and the number of spalling pits and furrows is less. Meanwhile, the friction coefficient and wear loss of the alloy sample are minima. Due to the uniform distribution of Si phases and equiaxed crystallization of α-Al phase in semisolid squeeze casting Al–Si–Cu–Mg alloys, the wear resistance is markedly enhanced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. V.A. Aranda, I.A. Figueroa, G. Gonzalez et al., Study of the microstructure and mechanical properties ofAl-Si-Fe with additions of chromium by suction casting. J. Alloy. Compd. 853, 1–9 (2021). https://doi.org/10.1016/j.jallcom.2020.157155

    Article  CAS  Google Scholar 

  2. A.K. Dahle, K. Nogita, S.D. Mcdonald et al., Eutectic modification and microstructure development in Al-Si alloys. Mater. Sci. Eng. A. 413–414, 243–248 (2005). https://doi.org/10.1016/j.msea.2005.09.055

    Article  CAS  Google Scholar 

  3. Y. Nemri, B. Gueddouar, M.E.A. Benamar et al., Effect of Mg and Zn contents on the microstructures and mechanical properties of Al-Si-Cu-Mg alloys. Int. Met. 12, 20–27 (2018). https://doi.org/10.1007/s40962-017-0134-y

    Article  Google Scholar 

  4. M. Qi, Y. Kang, Q. Qiu et al., Microstructures, mechanical properties, and corrosion behavior of novel high-thermal-conductivity hypoeutectic Al-Si alloys prepared by rheological high-pressure die-casting. J. Alloy. Compd. 749, 487–502 (2018). https://doi.org/10.1016/j.jallcom.2018.03.178

    Article  CAS  Google Scholar 

  5. J. Hernandez-Sandoval, A.M. Samuel, F.H. Samuel et al., Effect of additions of SiC and Al2O3 particulates on the microstructure and tensile properties of Al-Si-Cu-Mg cast alloys. Int. Met. 10, 253–263 (2016)

    Google Scholar 

  6. S.S. Wu, G. Zhong, P. An et al., Microstructural characteristics of Al-20Si-2Cu-0.4Mg-1Ni alloy formed by rheo-squeeze casting after ultrasonic vibration treatment. Trans. Nonferrous. Met. 12, 2863–2870 (2012). https://doi.org/10.1016/S1003-6326(11)61543-4

    Article  CAS  Google Scholar 

  7. H. Liu, L. Li, J. Niu et al., Effect of Mg and Cu additions on microstructure and mechanical properties of squeeze casting Al-Si-Cu-Mg alloy. Mater. Sci. Forum. 850, 511–518 (2016). https://doi.org/10.4028/www.scientific.net/MSF.850.511

    Article  Google Scholar 

  8. Y.L. Liu, C.J. Wu, H. Tu et al., Microstructure and mechanical properties of Al-10Si alloy modified with Al-5Ti. China. Foundry. 15, 405–410 (2018)

    Article  CAS  Google Scholar 

  9. M. Shafizadeh, H. Aashuri, S. Nikzad et al., Mechanical properties of Al-30Si-5Fe alloy using combination of rapid solidification and thixocasting processes. Metallogr Microstruct Anal 6, 502–511 (2017). https://doi.org/10.1007/s13632-017-0388-z

    Article  CAS  Google Scholar 

  10. H.M. Lus, Effect of casting parameters on the microstructure and mechanical properties of squeeze cast A380 aluminum die cast alloy. Metal. Mater. 4, 270–277 (2012). https://doi.org/10.4149/km_2012_4_243

    Article  CAS  Google Scholar 

  11. A. Maleki, A. Shafyei, B. Niroumand, Effects of squeeze casting parameters on the microstructure of LM13 alloy. J. Mater. Process. Tech. 8, 3790–3797 (2009). https://doi.org/10.1016/j.jmatprotec.2008.08.035

    Article  CAS  Google Scholar 

  12. C. Lin, S. Wu, S. Lue et al., Effects of high pressure rheo-squeeze casting on Fe-containing intermetallic compounds and mechanical properties of Al-17Si-2Fe-(0, 0.8) V alloys. Mater. Sci. Eng. A. 713, 105–111 (2017). https://doi.org/10.1016/j.msea.2017.12.050

    Article  CAS  Google Scholar 

  13. D. Vanluu, D.Z. Sheng, J.L. Wen, Effect of process parameters on microstructure and mechanical properties in AlSi9Mg connecting-rod fabricated by semi-solid squeeze casting. Mater. Sci. Eng. A. 558, 95–102 (2012). https://doi.org/10.1016/j.msea.2012.07.084

    Article  CAS  Google Scholar 

  14. A. Hekmat-Ardakan, X. Liu, F. Ajersch et al., Wear behaviour of hypereutectic Al-Si-Cu-Mg casting alloys with variable Mg contents. Wear 9, 684–692 (2010). https://doi.org/10.1016/j.wear.2010.07.007

    Article  CAS  Google Scholar 

  15. L. Lasa, J.M. Rodriguez-Ibabe, Wear behaviour of eutectic and hypereutectic Al-Si-Cu-Mg casting alloys tested against a composite brake pad. Mater. Sci. Eng. A. 1–2, 193–202 (2003). https://doi.org/10.1016/S0921-5093(03)00633-6

    Article  CAS  Google Scholar 

  16. K. Pratheesh, A. Kanjirathinkal, M.A. Joseph et al., Study on the effects of squeeze pressure on mechanical properties and wear characteristics of near-eutecticAl-Si-Cu-Mg-Ni piston alloy with variable cu content. Int. Met. 11, 831–842 (2017). https://doi.org/10.1007/s40962-017-0132-0

    Article  Google Scholar 

  17. B.Z. Yan, M.L. Chang, W. Kai, The structural evolutions of ZL109 alloy and 7050 alloy in the semisolid squeeze casting process. J. Wuhan. Univ. Technol. 1, 118–122 (2010). https://doi.org/10.1007/s11595-010-1118-4

    Article  CAS  Google Scholar 

  18. K. Sukumaran, B.C. Pai, M. Chakraborty, The effect of isothermal mechanical stirring on an Al-Si alloy in the semisolid condition. Mater. Sci. Eng. A. 1–2, 275–283 (2004). https://doi.org/10.1016/j.msea.2003.11.036

    Article  CAS  Google Scholar 

  19. W. Dai, S. Wu, S. Lue et al., Effects of rheo-squeeze casting parameters on microstructure and mechanical properties of AlCuMnTi alloy. Mater. Sci. Eng. A. 538, 320–326 (2012). https://doi.org/10.1016/j.msea.2012.01.051

    Article  CAS  Google Scholar 

  20. L.L. Shu, S.W. Shu, W. Li et al., Microstructure and tensile properties of wrought Al alloy 5052 produced by rheo-squeeze casting. Met. Mater. Trans. A. 44, 2735–2745 (2013)

    Article  Google Scholar 

  21. S. Li, A. Zhao, W. Mao et al., Study on forming mechanism of sphere-like α phase in microstructure of semisolid hypereutectic Al-Si alloy. Acta. Met. 5, 545–549 (2000)

    Google Scholar 

  22. Y. Zhang, X.P. Li, S.P. Sun et al., Microstructure evolution and mechanical properties of rheo-squeeze casting AZ91-Ca alloy during heat treatment. China. Foundry. 6, 485–491 (2017). https://doi.org/10.1007/s41230-017-7025-y

    Article  Google Scholar 

  23. M.S. Salleh, M.Z. Omar, Influence of Cu content on microstructure and mechanical properties of thixoformed Al-Si-Cu-Mg alloys. Trans. Nonferrous. Metal. 11, 352–353 (2015). https://doi.org/10.1016/S1003-6326(15)63995-4

    Article  CAS  Google Scholar 

  24. S.G. Shabestari, E. Parshizfard, Effect of semi-solid forming on the microstructure and mechanical properties of the iron containing Al–Si alloys. J. Alloys. Compd. 509, 7973–7978 (2011). https://doi.org/10.1016/j.jallcom.2011.05.052

    Article  CAS  Google Scholar 

  25. I. Outmani, J. Isselin et al., Effect of Si, Cu and processing parameters on Al-Si-Cu HPDC castings. J. Mater. Process. Tech. 249, 559–569 (2017). https://doi.org/10.1016/j.jmatprotec.2017.06.043

    Article  CAS  Google Scholar 

  26. Y.D. Jia, Z.J. Wei et al., Effect of high-pressure solidification on tensile properties and strengthening mechanisms of Al-20Si. J. Alloy. Compd. 688, 88–93 (2016). https://doi.org/10.1016/j.jallcom.2016.07.016

    Article  CAS  Google Scholar 

  27. M. Akbari, M.H. Shojaeefard et al., Wear and mechanical properties of surface hybrid metal matrix composites on Al–Si aluminum alloys fabricated by friction stir processing. Proc. Inst. Mech. Eng. Part. L. J. Mater. Des. Appl 223(5), 790–799 (2017). https://doi.org/10.1177/1464420717702413

    Article  CAS  Google Scholar 

  28. M. Qi, Y. Kang, Y. Xu et al., A novel rheological high pressure die-casting process for preparing large thin-walled Al-Si-Fe-Mg-Sr alloy with high heat conductivity, high plasticity and medium strength. Mater. Sci. Eng. A. 776, 1–18 (2020). https://doi.org/10.1016/j.msea.2020.139040

    Article  CAS  Google Scholar 

  29. X. Dong, X. Zhu, S. Ji, Effect of super vacuum assisted high pressure die casting on the repeatability of mechanical properties of Al-Si-Mg-Mn die-cast alloys. J. Mater. Process. Tech. 266, 105–113 (2019). https://doi.org/10.1016/j.jmatprotec.2018.10.030

    Article  CAS  Google Scholar 

  30. O. Prach, O. Trudonoshyn, P. Randelzhofer et al., Effect of Zr, Cr and Sc on the Al-Mg-Si-Mn high-pressure die casting alloys[J]. Mater. Sci. Eng. A. 759, 603–612 (2019). https://doi.org/10.1016/j.msea.2019.05.038

    Article  CAS  Google Scholar 

  31. S. Beroual, Z. Boumerzoug, P. Paillard et al., Comparative study on the microstructures and hardness of the AlSi10.6CuMg alloy produced by sand casting and high pressure die casting. Int. Met. 32(4), 191–212 (2019). https://doi.org/10.1080/13640461.2019.1603681

    Article  CAS  Google Scholar 

  32. J.F. Archard, Contact and rubbing of flat surfaces. J. Appl. Phys. 24(8), 981–988 (1953). https://doi.org/10.1063/1.1721448

    Article  Google Scholar 

  33. M.I.A. El Aal, H.S. Kim, Wear properties of high-pressure torsion processed ultrafine grained Al-7%Si alloy[J]. Mater. Des. 53, 373–382 (2014). https://doi.org/10.1016/j.matdes.2013.07.045

    Article  CAS  Google Scholar 

  34. O. Zak, B. Tonn, A. Baesgen et al., New wear resistant hypereutectic AlSi4Cu4FeCrMn alloys for high pressure die casting. Int. Met. 9, 49–57 (2015). https://doi.org/10.1007/BF03356040

    Article  Google Scholar 

Download references

Acknowledgements

The author expresses their gratitude to National Natural Science Foundation of China (No.51674168); Key-Area Research and Development Program of Guangdong Province (No.2020B010186002)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Runxia. Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, J., Luo, H., Bian, J. et al. The effect of squeeze casting process on the microstructure, mechanical properties and wear properties of hypereutectic Al–Si–Cu–Mg alloy. Inter Metalcast 16, 153–165 (2022). https://doi.org/10.1007/s40962-021-00575-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-021-00575-x

Keywords

Navigation