Skip to main content
Log in

Study on the Effects of Squeeze Pressure on Mechanical Properties and Wear Characteristics of near-Eutectic Al–Si–Cu–Mg–Ni Piston Alloy with Variable Cu Content

  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

This paper discusses the effects of the squeeze pressure on the microstructure, wear characteristics and mechanical properties of near-eutectic Al–Si piston alloys with variable copper (Cu) content. The paper starts with a description of Al–Si alloys and the features that make them desirable for use as piston alloys. The impact of the alloying elements on the mechanical properties, microstructure and wear characteristics is also discussed, where it is determined that adding alloying elements such as Cu, Mg and Ni results in improved strength and good casting properties. The paper also discusses the microstructural and material strength improvements that are achieved using the hybrid squeeze casting process and various heat treatment solutions. To evaluate the validity of these methods, the strength of the Cu-enriched Al–Si alloy as-cast and after heat treatment is analysed, and the results are compared. The results are for both gravity die casting and squeeze casting. Various techniques are used to analyse the chemical, mechanical and wear properties of the Al–Si alloys, including chemical analysis using optical spectrometry, heat treatment testing, microstructural observation, tensile testing and wear testing using scanning electron microscopy. The increase in Cu content in Al–Si alloys from 0 to 3% wt causes an increase in the ultimate tensile strength and hardness. Heat treatment and pressure application to the cast sample also result in improved mechanical properties, a fine and modified microstructure, improved wear resistance and a lack of surface porosity compared to the gravity die-cast samples. These characteristics are suitable for reducing the mechanical losses of Al–Si pistons as well as the fuel consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. M.M. Haque, A. Sharif, Study on wear properties of aluminium–silicon piston alloy. J. Mater. Process. Technol. 118, 69–73 (2001)

    Article  Google Scholar 

  2. M. Harun, I.A. Talib, A.R. Daud, Effect of element addition on wear properties of eutectic aluminium–silicon alloys. Wear 194, 54–59 (1996)

    Article  Google Scholar 

  3. N.A. Belov, D.G. Eskin, N.N. Avxentieva, Constituent phase diagrams of the Al–Cu–Fe–Mg–Ni–Si system and their application to the analysis of aluminium piston alloys. Acta Mater. 53, 4709–4722 (2005)

    Article  Google Scholar 

  4. C.L. Xu, H.Y. Wang, C. Liu, Q.C. Jiang, Growth of octahedral primary silicon in cast hypereutectic Al–Si alloys. J. Cryst. Growth 291, 540–547 (2006)

    Article  Google Scholar 

  5. Y. Yang, K. Yu, Y. Li, D. Zhao, X. Liu, Evolution of nickel rich phases in Al–Si–Cu–Ni–Mg piston alloys with different Cu additions. Mater. Des. 33, 220–225 (2012)

    Article  Google Scholar 

  6. F.H. Samuel, A.M. Samuel, H. Liu, Effect of magnesium content on the ageing behaviour of water-chilled Al–Si–Cu–Mg–Fe–Mn (380) alloy castings. J. Mater. Sci. 30, 2531–2540 (1995)

    Article  Google Scholar 

  7. M.A. Moustafa, F.H. Samuel, H.W. Doty, S. Valtierra, Effect of Mg and Cu additions on the microstructural characteristics and tensile properties of Sr-modified Al–Si eutectic alloys. Int. J. Cast Metals Res. 14, 235–253 (2002)

    Article  Google Scholar 

  8. S. Manasijevic, R. Radisa, S. Markovic, K. Raic, Z. Acimovic-Pavlovic, Implementation of the infrared thermography for thermo-mechanical analysis of the Al–Si cast piston. Pract. Metallogr. 46, 565–579 (2009)

    Article  Google Scholar 

  9. S. Manasijevic, R. Radisa, S. Markovic, Z. Acimovic-Pavlovic, K. Raic, Thermal analysis and microscopic characterization of the piston alloy AlSi13Cu4Ni2Mg. Intermetallics 19(3), 486–492 (2011)

    Article  Google Scholar 

  10. E.R. Wang, X.D. Hui, G.L. Chen, Eutectic Al–Si–Cu–Fe–Mn alloys with enhanced mechanical properties at room and elevated temperature. Mater. Des. 32, 4333–4340 (2011)

    Article  Google Scholar 

  11. S. Manasijevic, Z. Acimovic-Pavlovic, K. Raic, R. Radisa, V. Kvrgic, Optimization of cast pistons made of Al–Si piston alloy. Int. J. Cast Metals Res. 26(5), 255–261 (2013)

    Article  Google Scholar 

  12. S. Manasijevic, Aluminum piston alloys (LOLA Institute, Belgrade, 2012)

    Google Scholar 

  13. Z. Qian, X. Liu, D. Zhao, G. Zhang, Effects of trace Mn additional on the elevated temperature tensile strength and microstructure of a low-iron Al–Si piston alloy. Mater. Lett. 62, 2146–2149 (2008)

    Article  Google Scholar 

  14. C.L. Chena, R.C. Thomson, The combined use of EBSD and EDX analyses for the identification of complex intermetallic phases in multi-component Al–Si piston alloys. J. Alloy. Compd. 490, 293–300 (2010)

    Article  Google Scholar 

  15. M. Zeren, The effect of heat-treatment on aluminum-based piston alloys. Mater. Des. 28, 2511–2517 (2007)

    Article  Google Scholar 

  16. K. Pratheesh, A. Kanjirathinkal, M.A. Joseph, M. Ravi, Study on the effects of squeeze pressure on mechanical properties and wear characteristics of near eutectic Al–Si–Cu–Mg–Ni piston alloy with variable Mg content. Trans. Indian Inst. Metals 68(Suppl 1), S59–S66 (2015). doi:10.1007/s12666-015-0607-8

    Article  Google Scholar 

  17. J.E. Gruzleski, B.M. Closset, Liquid treatment to Al–Si alloys (Illinois, AFS, 1990), pp. 1–254

    Google Scholar 

  18. L.F. Mondlof, Aluminium alloys—structure properties (Butterworths, London, 1976), pp. 2492–2500

    Google Scholar 

  19. J.E. Hatch, Aluminium properties and physical metallurgy (ASM, Metals Park, 1984), pp. 1–104, 200–241, 320–350

  20. Y.H. Cho, D.H. Joo, C.H. Kim, H.C. Lee, The effect of alloy addition on the high temperature properties of overaged Al–Si (Cu–Mg–Ni) sat alloy. Mater. Sci. Forum 519–521, 461–466 (2006)

    Article  Google Scholar 

  21. X.F. Liu, J.G. Qiao, Y.Y. Wu, X.J. Liu, X.F. Bian, EPMA analysis of Calcium—rich compounds in near eutectic Al–Si alloys. J. Alloys Compd. 388, 83–90 (2005)

    Article  Google Scholar 

  22. Y.J. Li, S. Vrusethaug, A. Olsen, Influence of Cu on the mechanical properties and precipitation behaviour of Al–Si7Mg0.5 alloy during aging treatment. Scripta Mater. 54, 99–103 (2006)

    Article  Google Scholar 

  23. M. Zeren, Effect of copper and silicon content on mechanical properties in Al–Cu–Si–Mg alloys. J. Mater. Process. Technol. 169, 292–298 (2005)

    Article  Google Scholar 

  24. P. Singh, A. Sharma, T.V. Rajan, Effect of grain refinement and modification of mechanical and wear properties of Al-9%Si-4%Cu-0.5%Mg alloys. Indian Foundry J. 52(11), 23–34 (2006)

    Google Scholar 

  25. G. Shabestari, H. Moemeni, Effect of copper and solidification conditions on the microstructure and mechanical properties of Al–Si–Mg alloys. J. Mater. Process. Techno. 153–154, 193–198 (2004)

    Article  Google Scholar 

  26. G.A. Chadwick, T.M. Yue, Principles and applications of squeeze castings. Metals Mater. 5(1), 6–12 (1989)

    Google Scholar 

  27. Y. Zhong, G. Su, K. Yang, Microsegregation and improved methods of squeeze casting 2024 aluminium alloy. J. Mater. Sci. Technol. 19(5), 413–416 (2003)

    Google Scholar 

  28. M.T. Abou El-khair, Microstructure characterization and tensile properties of squeeze-cast AlSiMg alloys. Mater. Lett. 59, 894–900 (2005)

    Article  Google Scholar 

  29. K. Pratheesh, A. Kanjirathinkal, M.A. Joseph, M. Ravi, Effects of Sr and pressure on microstructure, mechanical and wear properties of near eutectic Al–Si piston alloys. Int. J. Cast Metals Res. (2015). doi:10.1179/1743133615Y.0000000016

    Google Scholar 

  30. W.M. Edwards, (2002) Microstructural and mechanical property modelling for the processing of Al–Si Alloys, PhD Thesis, Institute of Polymer Technology and Materials Engineering, Loughborough University

  31. D.G. McCartney, Grain refining of aluminium and its alloys using inoculants. Int. Mater. Rev. 34(1), 247–260 (1989)

    Article  Google Scholar 

  32. B.S. Murty, S.A. Kori, M. Chakraborty, Grain refinement of aluminium and its alloys by heterogeneous nucleation and alloying. Int. Mater. Rev. 47(1), 3–29 (2002)

    Article  Google Scholar 

  33. R. Ferragut, A. Dupasquier, C.E. Macchi, A. Somoza, R.N. Lumley, I.J. Polmear, Vacancy –solute interactions during multiple step Ageing of an Al–Cu–Mg–Ag alloy. J. Scr. Mater. 60(3), 137–140 (2009)

    Article  Google Scholar 

  34. D.H. Xiao, M. Song, Super plastic deformation of an as-rolled Al–Cu–Mg–Ag alloy. J. Mater. Des. 30(2), 424–426 (2009)

    Article  Google Scholar 

  35. J. Wang, D. Yi, X. Su, F. Yin, Influence of deformation ageing treatment on microstructure and properties of aluminium alloy 2618. J. Mater. Charact. 59(7), 965–968 (2008)

    Article  Google Scholar 

  36. T.M. Yue, G.A. Chadwick, Principles and applications of squeeze casting. Metals Mater. 5, 6–12 (1989)

    Google Scholar 

  37. K.B. Shah, S. Kumar, D.K. Dwivedi, Aging temperature and abrasive wear behaviour of cast Al–(4%, 12%, 20%)Si–0.3% Mg alloys. Mater. Des. 28, 1968–1974 (2007)

    Article  Google Scholar 

  38. S. Manasijevi, S. Markovic, Z. Aimovc-Pavlovic, K. Rac, R. Radisa, Effect of heat treatment on the microstructure and mechanical properties of piston alloys. MTAEC9 47(5), 585 (2013)

    Google Scholar 

  39. K. Pratheesh, A. Kanjirathinkal, M.A. Joseph, M. Ravi, Effect of Aging Time on Mechanical Properties and Wear Characteristics of near Eutectic Al–Si–Cu–Mg–Ni Piston Alloy. Trans. Indian Inst. Metals 68(Suppl 1), S25–S30 (2015). doi:10.1007/s12666-015-0584-y

    Google Scholar 

  40. N. Saheb, T. Laoui, A. Daud, M. Harun, S. Radiman, R. Yahaya, Influence of Ti addition on wear properties of Al–Si eutectic alloys. J. Wear 249(8), 656–662 (2001)

    Article  Google Scholar 

  41. R.X. Li, R.D. Li, Y.H. Zhao, L.Z. He, C.X. Li, H.R. Guan, Z.Q. Hu, Age hardening behaviour of cast Al–Si base alloy. J. Mater. Lett. 58(15), 2096–2101 (2004)

    Article  Google Scholar 

  42. C.H. Caceres, J.R. Griffiths, Damage by the cracking of silicon particles in an Al–7Si–0.4Mg casting alloy. Acta Mater. 44(1), 25–33 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Pratheesh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pratheesh, K., Kanjirathinkal, A., Joseph, M.A. et al. Study on the Effects of Squeeze Pressure on Mechanical Properties and Wear Characteristics of near-Eutectic Al–Si–Cu–Mg–Ni Piston Alloy with Variable Cu Content. Inter Metalcast 11, 831–842 (2017). https://doi.org/10.1007/s40962-017-0132-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-017-0132-0

Keywords

Navigation