Skip to main content
Log in

The Concept of Quality Index and Its Application for Al–Si Cast Alloys

  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

The quality of aluminum–silicon casting alloys is considered to be a key factor in selecting an alloy for a particular engineering application. Deciding upon the right alloy quality thus involves reaching a suitable compromise between numerous factors so as to present the least possible risk with maximum performance in combination with adequate cost-effectiveness. Alloy composition, solidification rate, heat treatment procedures, casting defects, and such microstructural features as grain size and intermetallic phases, are all parameters which closely affect alloy quality since they also influence the mechanical properties of the casting. The development of the quality index concept and quality charts, in particular, in relation to their application to Al–Si casting alloys will be reviewed in this article. Although this paper covers only aluminum alloys, the methodology should also apply to other materials and alloys (iron and steels, Mg alloys, etc.) Cáceres has established the scientific basis for constructing quality indices and plots, and this could be applied to other materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21

Similar content being viewed by others

References

  1. M. Drouzy, S. Jacob, M. Richard, Interpretation of tensile results by means of quality index and probable yield strength. AFS Int. Cast Met. J. 5, 43–50 (1980)

    CAS  Google Scholar 

  2. S. Jacob, Quality index in predicting of properties of aluminum castings—a review. AFS Trans. 108, 811–818 (2000)

    CAS  Google Scholar 

  3. C.H. Caceres, C.J. Davidson, J.R. Griffiths, Q.G. Wang, The effect of Mg on the microstructure and mechanical behavior of Al-Si-Mg casting alloys. Metall. Mater. Trans. A 30, 2611–2618 (1999). https://doi.org/10.1007/s11661-999-0301-8

    Article  Google Scholar 

  4. T. Din, A.K.M.B. Rashid, J. Campbell, High strength aerospace casting alloys: quality factor assessment. Mater. Sci. Technol. 12, 269–273 (1996)

    Article  CAS  Google Scholar 

  5. C.H. Cáceres, A rationale for the quality index of Al–Si–Mg casting alloys. Int. J. Cast Met. Res. 10, 293–299 (1998)

    Article  Google Scholar 

  6. C.H. Cáceres, A phenomenological approach to the quality index of Al–Si–Mg casting alloys. Int. J. Cast Met. Res. 12, 367–375 (2000)

    Article  Google Scholar 

  7. C.H. Cáceres, I.L. Svensson, J.A. Taylor, Strength-ductility behaviour of Al–Si–Cu–Mg casting alloys in T6 temper. Int. J. Cast Met. Res. 15, 531–543 (2003)

    Article  Google Scholar 

  8. C.H. Cáceres, J.A. Taylor, Enhanced ductility in Al–Si–Cu–Mg casting alloys with high Si content. Metall. Mater. Trans. B 37(6), 897–903 (2006)

    Article  Google Scholar 

  9. G.E. Dieter, Mechanical Metallurgy, 3rd edn. (McGraw-Hill, New York, 1986)

    Google Scholar 

  10. J.R. Davis, Tensile Testing, 2nd edn. (ASM International, Materials Park, 2004)

    Google Scholar 

  11. H.W. Kerr, J. Cisse, G.F. Bolling, On equilibrium and non-equilibrium peritectic transformations. Acta Metall. 22, 677–686 (1974)

    Article  CAS  Google Scholar 

  12. M.A. Moustafa, F.H. Samuel, H.W. Doty, S. Valtierra, Effect of Mg and Cu additions on the microstructural characteristics and tensile properties of Sr-modified Al–Si eutectic alloys. Int. J. Cast Met. Res. 14, 235–253 (2002)

    Article  CAS  Google Scholar 

  13. A.L. Dons, G. Heiberg, J. Voje, J.S. Maeland, J.O. Løland, A. Prestmo, On the effect of additions of Cu and Mg on the ductility of Al–Si foundry alloys cast with a cooling rate of approximately 3 K/s. Mater. Sci. Eng. A 413–414, 561–566 (2005)

    Article  CAS  Google Scholar 

  14. Q.G. Wang, C.H. Cáceres, Mg effects on the eutectic structure and tensile properties of Al–Si–Mg alloys. Mater. Sci. Forum 242, 159–164 (1997)

    Article  CAS  Google Scholar 

  15. G.K. Sigworth, The modification of Al–Si casting alloys: important practical and theoretical aspects. Int. J. Metalcast. 2(2), 19–40 (2008). https://doi.org/10.1007/BF03355425

    Article  CAS  Google Scholar 

  16. S. Hegde, K.N. Prabhu, Modification of eutectic silicon in Al–Si alloys. J. Mater. Sci. 43, 3009–3027 (2008)

    Article  CAS  Google Scholar 

  17. C.H. Cáceres, Microstructure design and heat treatment selection for casting alloys using the quality index. J. Mater. Eng. Perform. 9(2), 215–221 (2000)

    Article  Google Scholar 

  18. C.H. Cáceres, Particle cracking damage and quality index of Al–Si–Mg casting alloys. AFS Trans. 108, 709–712 (2000)

    Google Scholar 

  19. C.H. Cáceres, J. Barresi, Selection of temper and Mg content to optimize the quality index of Al–7Si–Mg casting alloys. Int. J. Cast Met. Res. 12, 377–384 (2000)

    Article  Google Scholar 

  20. C.H. Cáceres, J.H. Sokolowski, P. Gallo, Effect of aging and Mg content on the quality index of two model Al–Cu–Si–Mg alloys. Mater. Sci. Eng. A 271, 53–61 (1999)

    Article  Google Scholar 

  21. G.K. Sigworth, Dendritic solidification and segregation, in Best Practices in Aluminum Metalcasting (American Foundry Society, Schaumburg, 2014), pp. 165–174

  22. C.H. Cáceres, T. Din, A.K.M.B. Rashid, J. Campbell, Effect of aging on quality index of an Al–Cu casting alloy. Mater. Sci. Technol. 15(6), 711–716 (1999)

    Article  Google Scholar 

  23. C.H. Cáceres, L. Wang, D. Apelian, M. Makhlouf, Alloy selection for die castings using the quality index. AFS Trans. 107, 239–247 (1999)

    Google Scholar 

  24. C.H. Cáceres, I.L. Svensson, J.A. Taylor, Microstructural factors and the mechanical performance of Al–Si–Mg and Al–Si–Cu–Mg casting alloys, in Proceeding of the 2nd International Aluminum Casting Technology Symposium (ASM International, Columbus, 2002), pp. 427–434

  25. N.D. Alexopoulos, S.G. Pantelakis, A new quality index for characterizing aluminum cast alloys with regard to aircraft structure design requirements. Metall. Mater. Trans. A 35A, 301–308 (2004)

    Article  CAS  Google Scholar 

  26. N.D. Alexopoulos, S.G. Pantelakis, Quality assessment of artificially aged A357 aluminum alloy cast ingots by introducing approximate expressions of the quality index QD. Metall. Mater. Trans. A 35A, 3079–3089 (2004)

    Article  CAS  Google Scholar 

  27. N.D. Alexopoulos, S.G. Pantelakis, Evaluation of the effects of variations in chemical composition on the quality of Al–Si–Mg, Al–Cu, and Al–Zn–Mg cast aluminum alloys. J. Mater. Eng. Perform. 12(2), 196–205 (2003)

    Article  CAS  Google Scholar 

  28. N.D. Alexopoulos, S.G. Pantelakis, Quality evaluation of A357 cast aluminum alloy specimens subjected to different artificial aging treatment. Mater. Des. 25, 419–430 (2004)

    Article  CAS  Google Scholar 

  29. N.D. Alexopoulos, Definition of quality in cast aluminum alloys and its characterization with appropriate indices. J. Mater. Eng. Perform. 15(1), 59–66 (2006)

    Article  CAS  Google Scholar 

  30. N.D. Alexopoulos, Generation of quality maps to support material selection by exploiting the quality indices concept of cast aluminum alloys. Mater. Des. 28, 534–543 (2007)

    Article  CAS  Google Scholar 

  31. M. Tiryakioğlu, J.T. Staley, J. Campbell, Evaluating structural integrity of cast Al–7%Si–Mg alloys via work hardening characteristics: II. A new quality index. Mater. Sci. Eng. A 368, 231–238 (2004)

    Article  CAS  Google Scholar 

  32. H.R. Ammar, F.H. Samuel, A.M. Samuel, G.K. Sigworth, J.C. Lin, Appropriate heat treatment procedures for improving strength and quality in 354-type casting alloys. AFS Trans. 118, 9–28 (2010)

    CAS  Google Scholar 

  33. J.E. Hatch, Aluminum: Properties and Physical Metallurgy (American Society for Metals, Metals Park, 1984)

    Google Scholar 

  34. T.O. Mbuya, B.O. Odera, S.P. Ng’ang’a, Influence of iron on castability and properties of aluminum silicon alloys: literature review. Int. J. Cast Met. Res. 16(5), 451–465 (2003)

    Article  CAS  Google Scholar 

  35. L.F. Mondolfo, Aluminium Alloys: Structure and Properties (Butterworths, London, 1976)

    Google Scholar 

  36. L. Wang, M. Makhlouf, D. Apelian, Aluminum die casting alloys: alloy composition, microstructure, and properties—performance relationships. Int. Mater. Rev. 40(6), 221–238 (1995)

    Article  CAS  Google Scholar 

  37. P.N. Crepeau, Effect of iron in Al–Si casting alloys: a critical review. AFS Transactions 103, 361–366 (1995)

    CAS  Google Scholar 

  38. J.A. Taylor, The Effect of Iron in Al-Si Casting Alloys. 35th Australian Foundry Institute National Conference (Australian Foundry Institute, Adelaide, South Australia, 2004)

  39. A. Couture, Iron in aluminum casting alloys—a literature survey. AFS Int. Cast Met. J. 6, 9–17 (1981)

    Google Scholar 

  40. G.K. Sigworth, Controlling Tensile Strength in Aluminum Castings, Private Communication (2006)

  41. G.K. Sigworth, C.H. Cáceres, Quality issues in aluminum net shape castings. AFS Trans. 112, 1–15 (2004)

    Google Scholar 

  42. G.K. Sigworth, Aluminum casting alloys, Special Communication (2008)

  43. Y.-H. Cho, Y.-R. Im, S.-W. Kwon, H.-C. Lee, The effect of alloying elements on the microstructure and mechanical properties of Al–12Si cast alloys. Mater. Sci. Forum 426–432, 339–344 (2003)

    Article  Google Scholar 

  44. M. Zeren, Effect of copper and silicon content on mechanical properties in Al–Cu–Si–Mg alloys. J. Mater. Process. Technol. 169, 292–298 (2005)

    Article  CAS  Google Scholar 

  45. S.G. Shabestari, F. Shahri, Influences of modification, solidification conditions and heat treatment on the microstructure and mechanical properties of A356 aluminum alloy. J. Mater. Sci. 39, 2023–2032 (2004)

    Article  CAS  Google Scholar 

  46. M.M. Haque, Effects of strontium on the structure and properties of aluminum–silicon alloys. J. Mater. Process. Technol. 55, 193–198 (1995)

    Article  Google Scholar 

  47. H.R. Ammar, Influence of Metallurgical Parameters on the Mechanical Properties and Quality Indices of Al–Si–Cu–Mg and Al–Si–Mg Casting Alloys, Ph.D. Thesis, UQAC (2010)

  48. M.F. Ibrahim, A.M. Samuel, H.W. Doty, F.H. Samuel, Effect of aging conditions on precipitation hardening in Al–Si–Mg and Al–Si–Cu–Mg alloys. Int. J. Metalcast. 11(2), 274–286 (2017)

    Article  Google Scholar 

  49. R.C. Lemon, C.R. Howle, Premium strength aluminum casting alloys 354 and 359. AFS Trans. 70, 465–470 (1963)

    Google Scholar 

  50. R.W. Smith, Modification of Aluminum Silicon Alloys, in Proceedings of the Conference on Solidification of Metals (Iron and Steel Institute, Brighton, 1967), pp. 224–236

  51. S.-Z. Lu, A. Hellawell, The mechanism of silicon modification in aluminum–silicon alloys: impurity induced twinning. Metall. Trans. A 18A, 1721–1733 (1987)

    Article  CAS  Google Scholar 

  52. S.-Z. Lu, A. Hellawell, Modification and Refinement of Cast Al–Si Alloys, ed. by J.E. Evans. Light Metals (The Minerals, Metals and Material Society, Warrendale, PA, 1995), pp. 989–993

    Google Scholar 

  53. J.E. Gruzleski, The art and science of modification: 25 years of progress. AFS Trans. 100, 673–683 (1992)

    CAS  Google Scholar 

  54. G. Chai, L. Bäckerud, Factors affecting modification of Al–Si alloys by adding Sr-containing master alloys. AFS Trans. 100, 847–854 (1992)

    CAS  Google Scholar 

  55. P.B. Crosley, L.F. Mondolfo, The modification of aluminum silicon alloys. Mod. Cast. 49, 89–100 (1966)

    CAS  Google Scholar 

  56. H.J. Li, S. Shivkumar, X.J. Luo, D. Apelian, Influence of modification on the solution heat-treatment response of cast Al–Si–Mg alloys. Cast Met. 1(4), 227–234 (1989)

    Article  Google Scholar 

  57. B. Closset, J.E. Gruzleski, Structure and properties of hypoeutectic Al–Si–Mg alloys modified with pure strontium. Metall. Trans. A 13A, 945–951 (1982)

    Article  CAS  Google Scholar 

  58. J.E. Gruzleski, B.M. Closset, The Treatment of Liquid Aluminum-Silicon Alloys (American Foundrymen’s Society Inc, Des Plaines, 1990)

    Google Scholar 

  59. M.F. Ibrahim, M.H. Abdelaziz, H.W. Doty, S. Valtierra, F.H. Samuel, Effect of Microalloying Elements on the Heat Treatment Response and Tensile Properties of Al-Si-Mg Alloys, Ch. 01, in Solidification, ed. by A.E. Ares (InTech, Rijeka, 2018)

  60. A. Morri, Correlations among microstructure, effect of thermal exposure and mechanical properties, in Heat Treated Al-Si-Mg and Al-Cu Aluminium Alloys, Doctoral School on Engineering Sciences (UNIVPM, 2012), pp. 1–11

  61. B.N. Sarada, P.L. Srinivasamurthy, Swetha, Microstructural characteristics of Sr and Na modified Al–Mg–Si alloy. Int. J. Innov. Res. Sci. Eng. Technol. 2(8), 3975–3983 (2013)

  62. G.K. Sigworth, Understanding quality in aluminum castings. Inter. Metalcast. 5, 7–22 (2011). https://doi.org/10.1007/BF03355504

    Article  CAS  Google Scholar 

  63. H.R. Ammar, A.M. Samuel, F.H. Samuel, E. Simielli, G.K. Sigworth, J.C. Lin, Influence of aging parameters on the tensile properties and quality index of Al–9 Pct Si–1.8 Pct Cu–0.5 Pct Mg 354-type casting alloys. Metall. Mater. Trans. A 43(1), 61–73 (2012)

    Article  CAS  Google Scholar 

  64. K.J. Oswalt, M.S. Misra, Dendrite arm spacing (DAS): a nondestructive test to evaluate tensile properties of premium quality aluminum alloy (Al–Si–Mg) castings. AFS Trans. 88, 845–862 (1980)

    CAS  Google Scholar 

  65. H.R. Ammar, C. Moreau, A.M. Samuel, F.H. Samuel, H.W. Doty, Influences of alloying elements, solution treatment time and quenching media on quality indices of 413-type Al–Si casting alloys. Mater. Sci. Eng. A 489(1–2), 426–438 (2008)

    Article  CAS  Google Scholar 

  66. H.R. Ammar, C. Moreau, A.M. Samuel, F.H. Samuel, H.W. Doty, Effects of aging parameters on the quality of 413-type commercial alloys. Mater. Des. 30(4), 1014–1025 (2009)

    Article  CAS  Google Scholar 

  67. H.R. Ammar, F.H. Samuel, A.M. Samuel, G.K. Sigworth, J.C. Lin, Developing superior strength and optimum quality in Al–9%Si–0.5%Mg casting alloys for structural applications. AFS Trans. 117, 149–168 (2009)

    CAS  Google Scholar 

  68. J.M. Boileau, J.W. Zindel, J.E. Allison, The effect of solidification time on the mechanical properties in a cast A356-T6 aluminum alloy. SAE Trans. 106(5), 63–74 (1997)

    Google Scholar 

  69. G.H. Garza-Elizondo, A.M. Samuel, F.H. Samuel, H.R. Ammar, S. Valtierra Gallardo, Effect of alloying elements on the performance of 354 type alloys. AFS Trans. 125, 61–74 (2017)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. H. Samuel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A part of this work was based on the PhD Thesis of HRA.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ammar, H.R., Samuel, A.M., Samuel, F.H. et al. The Concept of Quality Index and Its Application for Al–Si Cast Alloys. Inter Metalcast 15, 1197–1212 (2021). https://doi.org/10.1007/s40962-020-00556-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-020-00556-6

Keywords

Navigation