Skip to main content
Log in

The Effects of Zr Addition on the Microstructure and Mechanical Properties of A356–SiC Composites

  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

The influences of Zr on the microstructure of A356–15 vol% SiC composites, such as the distribution of SiC particles in the matrix, the grain size and the hardness and impression creep between 225 and 275 °C, were examined. These composites were prepared using the stir casting technique. The addition of Zr forms Al3Zr phases, which can act as heterogeneous nucleation sites, thus resulting in grain refinement. Furthermore, Zr leads to a more uniform distribution and an increased area fraction of SiC particles. Moreover, the addition of only 0.1 wt% Zr significantly increased the Brinell hardness by approximately 18% when compared to the composite without added Zr. The addition of a small amount of Zr (0.1 wt%) is sufficient to increase the Vickers microhardness by approximately 34% when compared to the composite without added Zr, indicating the effect of solid solution strengthening on the composite matrix. The high-temperature stability test using the impression creep technique demonstrated that the A356–15 vol% SiC composite with 0.1 wt% added Zr shows improved creep resistance. However, the creep resistance of composite samples with higher than 0.1 wt% added Zr decreases due to grain boundary sliding occurring in the A356–15vol% SiC composites with too much added Zr.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17

Similar content being viewed by others

References

  1. M. Mohammadpoura, R. Azari Khosroshahi, R. Taherzadeh Mousavian, D. Brabazon, Effect of interfacial active elements addition on the incorporation of micron-sized SiC particles in molten pure aluminum. Ceramics Int. 40(6), 8323–8332 (2014)

    Article  Google Scholar 

  2. F. Akhlaghi, A. Lajevardi, H.M. Maghanaki, Effects of casting temperature on the microstructure and wear resistance of compocast A356/SiCp composites: a comparison between SS and SL routes. J. Mater. Process. Technol. 155–156, 1874–1880 (2004)

    Article  Google Scholar 

  3. J.A. Garcia-Hinojosa, C.R. González, J.A.I. Juárez, M.K. Surrapa, Effect of grain refinement treatment on the microstructure of cast Al–7Si–SiCp composites. Mater. Sci. Eng., A 386(1–2), 54–60 (2004)

    Article  Google Scholar 

  4. A.P. Kumar, D. Rohatgi, D. Weiss, 50 years of foundry-produced metal matrix composites and future opportunities. Inter Metalcast. (2019). https://doi.org/10.1007/s40962-019-00375-4

    Article  Google Scholar 

  5. H. Khosravi, H. Bakhshi, E. Salahinejad, Effects of compocasting process parameters on microstructural characteristics and tensile properties of A356–SiCp composites. Trans. Nonferrous Met. Soc. China 24(8), 2482–2488 (2014)

    Article  CAS  Google Scholar 

  6. Y. Du, P. Zhang, J. Zhang, S. Yao, Radial Distribution of SiC Particles in Mechanical Stirring of A356–SiCp Liquid. J. Mater. Sci. Technol. 28(10), 951–955 (2018)

    Article  Google Scholar 

  7. J. Hashim, L. Looney, M.S.J. Hashmi, The wettability of SiC particles by aluminium alloy. J. Mater. Pro. Techno. 119(1–3), 324–328 (2001)

    Article  CAS  Google Scholar 

  8. M. Rezayat, M.R. Bahremand, M.H. Parsa, H. Mirzadeh, J.M. Cabrera, Modification of As-cast Al–Mg/B4C composite by addition of Zr. J. Alloys Compd 685, 70–77 (2016)

    Article  CAS  Google Scholar 

  9. A. Gul, Ö. Gürsoy, E. Erzi, D. Dispinar, E. Kayali, Aluminum Alloy with High Mg Content: Casting Studies for Microstructural Evolution, Phase Formation and Thermophysical Properties with Different Alloying Elements, MMMS (Springer, Cham, 2019), pp. 337–342

    Google Scholar 

  10. C. John, Complete Casting Handbook: Metal Casting Processes, Metallurgy, Techniques and Design, 1st edn. (Elsevier, Oxford, 2011)

    Google Scholar 

  11. K. Sukumaran, S.G.K. Pillai, R.M. Pillai, V.S. Kelukutty, B.C. Pai, K.G. Satyanarayana, K.K. Ravikumar, The effects of magnesium additions on the structure and properties of Al–7Si–10SiCp composites. J. Mater. Sci. 30(6), 1469–1472 (1995)

    Article  CAS  Google Scholar 

  12. L.F. Mondolfo, Aluminium Alloys: Structure and Properties, 1st edn. (Elsevier, Oxford, 1976)

    Google Scholar 

  13. F. Wang, D. Qiu, Z.L. Liu, J.A. Taylor, M.A. Easton, M.X. Zhang, The grain refinement mechanism of cast aluminium by zirconium. Acta Mater. 61(15), 5636–5645 (2013)

    Article  CAS  Google Scholar 

  14. B. Baradarani, R. Raiszadeh, Precipitation hardening of cast Zr-containing A356 aluminium alloy. Mater. Des. 32(2), 935–940 (2011)

    Article  CAS  Google Scholar 

  15. R. Mahmudi, P. Sepehrband, H.M. Ghasemi, Improved properties of A319 aluminum casting alloy modified with Zr. Mater. Lett. 60(21–22), 2606–2610 (2006)

    Article  CAS  Google Scholar 

  16. G.H. Garza-Elizondo, A.M. Samuel, F.H. Samuel, Effect of transition metals on the tensile properties of 354 alloy: role of precipitation hardening. Inter Metalcast. 11(3), 413–427 (2017)

    Article  Google Scholar 

  17. J.D. Robson, P.B. Prangnell, Dispersoid precipitation and process modelling in zirconium containing commercial aluminium alloys. Acta Mater. 49(4), 599–613 (2001)

    Article  CAS  Google Scholar 

  18. K.E. Knipling, D.C. Dunand, D.N. Seidman, Precipitation evolution in Al–Zr and Al–Zr–Ti alloys during isothermal aging at 375–425°C. Acta Mater. 56(1), 114–127 (2008)

    Article  CAS  Google Scholar 

  19. K.E. Knipling, D.C. Dunand, Creep resistance of cast and aged Al–0.1Zr and Al–0.1Zr–0.1Ti (at.%) alloys at 300–400°C. Scr. Mater. 59(4), 387–390 (2008)

    Article  CAS  Google Scholar 

  20. S. Rashno, B. Nami, S.M. Miresmaeili, Impression creep behavior of a cast MRI153 magnesium alloy. Mater. Des. 60, 289–294 (2014)

    Article  CAS  Google Scholar 

  21. F. Labib, R. Mahmudi, H.M. Ghasemi, Impression creep behavior of extruded Mg–SiCp composites. Mater. Sci. Eng., A 640, 91–97 (2015)

    Article  CAS  Google Scholar 

  22. S.M. Miresmaeili, B. Nami, Impression creep behavior of Al–1.9%Ni–1.6%Mn–1%Mg alloy. Mater. Des. 56, 286–290 (2014)

    Article  CAS  Google Scholar 

  23. S. Soltani, R.A. Khosroshahi, R.T. Mousavian, Z.Y. Jiang, A.F. Boostani, D. Brabazon, Stir casting process for manufacture of Al–SiC composites. Rare Met. 36(7), 581–590 (2017)

    Article  CAS  Google Scholar 

  24. H. Ghandvar, S. Farahany, M.H. Idris, Effect of wettability enhancement of SiC particles on impact toughness and dry sliding wear behavior of compocasted A356/20SiCp composites. Tri. Trans. 61(1), 88–89 (2018)

    Article  CAS  Google Scholar 

  25. W. Zhou, Z.M. Xu, Casting of SiC reinforced metal matrix composites. J. Mater. Pro. Technol. 63, 358–363 (1997)

    Article  Google Scholar 

  26. S.H. Seyed Ebrahimi, M. Emamy, Effects of Al–5Ti–1B and Al–5Zr master alloys on the structure, hardness and tensile properties of a highly alloyed aluminum alloy. Mater. Des. 31(1), 200–209 (2010)

    Article  CAS  Google Scholar 

  27. B.S. Murty, S.A. Kori, M. Chakraborty, Grain refinement of aluminium and its alloys by heterogeneous nucleation and alloying. Int. Mater. Rev. 47(1), 3–29 (2002)

    Article  CAS  Google Scholar 

  28. M. Easton, D. St John, Grain refinement of aluminum alloys: part I. the nucleant and solute paradigms - a review of the literature. Metall. Mater. Trans. A 30(6), 1613–1623 (1999)

    Article  Google Scholar 

  29. F. Kahrıman, M. Zeren, The effect of Zr on aging kinetics and properties of as-cast AA6082 alloy. Inter Metalcast. 11(2), 216–222 (2017)

    Article  Google Scholar 

  30. H. Miyahara, Y. Maruno, K. Ogi, Influence of solidification microstructure and distribution of reinforcement on fatigue characteristics of notched SiC reinforced AC4B alloy composites. Mater. Trans. 46(5), 950–958 (2005)

    Article  CAS  Google Scholar 

  31. O.D. Sherby, E.M. Taleff, Influence of grain size, solute atoms and second-phase particles on creep behavior of polycrystalline solids. Mater. Sci. Eng. A 322(1–2), 89–99 (2002)

    Article  Google Scholar 

  32. M. Cabibbo, Strengthening evaluation in a composite Mg–RE alloy using TEM. Mater. Sci. Forum 678, 75–84 (2011)

    Article  CAS  Google Scholar 

  33. F. Xu, C.W. Lawrence, G. Han, Y. Tan, Compression creep behavior of high volume fraction of SiC particles reinforced Al composite fabricated by pressureless infiltration. Chi. J. Aero. 20(2), 115–119 (2007)

    Article  Google Scholar 

  34. H.J. Ryu, W.H. Sohn, S.H. Hong, Effect of SiC volume fraction on creep behavior of SiCp/2124Al metal matrix composite. Mater. Sci. Res. Int. 5(4), 280–284 (1999)

    CAS  Google Scholar 

  35. S. Spigarelli, C. Paoletti, A new model for the description of creep behaviour of aluminium-based composites reinforced with nanosized particles. Compos Part A 112, 325–355 (2018)

    Article  Google Scholar 

  36. A.S.M. Handbook, Mechanical Testing an Evaluation, vol. 8 (American Society for Metals, Materials Park, 2003)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Thailand Graduate Institute of Science and Technology (TGIST) No. TG-33-20-57-043D and the King Mongkut’s University of Technology Thonburi through the “KMUTT 55th Anniversary Commemorative Fund” for their financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Limmaneevichitr.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panthglin, C., Boontein, S., Kajornchaiyakul, J. et al. The Effects of Zr Addition on the Microstructure and Mechanical Properties of A356–SiC Composites. Inter Metalcast 15, 169–181 (2021). https://doi.org/10.1007/s40962-020-00439-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-020-00439-w

Keywords

Navigation