Skip to main content
Log in

Effect of Yttrium on Hot Tearing Susceptibility of Mg–6Zn–1Cu–0.6Zr Alloys

  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

The effect of Yttrium (Y) addition on hot tearing susceptibility of Mg–6Zn–1Cu–xY–0.6Zr (x = 0, 1, 2, 3) alloys was investigated using a constrained rod casting apparatus which monitored the hot tearing formation with a load sensor and a data acquisition system. The solidification characterization of the investigated alloys was studied through thermal analysis. The thermal analysis results revealed that as-cast Mg–6Zn–1Cu–xY–0.6Zr alloys are composed of primary α-Mg dendrites and several types of second phases, MgZnCu, MgZn2, Mg3YZn6 and/or Mg3Y2Zn3. The hot tearing susceptibility is affected by the addition of Y content that significantly decreases the hot tearing susceptibility of Mg–6Zn–1Cu–xY–0.6Zr alloys due to the grain refinement and high feeding capacity. In addition, the analysis of microstructures and fracture surfaces indicated that liquid film theory and feeding theory are mainly dominant on the hot tearing mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. V. Angelini, L. Ceschini, A. Morri et al., Influence of heat treatment on microstructure and mechanical properties of rare earth-rich magnesium alloy. Int. J. Metalcast. 11, 382–395 (2017)

    Article  CAS  Google Scholar 

  2. Q.Y. Sun, D.R. Liu, L.P. Wang et al., Influences of rod diameter and sand-mould strength on hot tearing in Mg WE43A constrained rod castings. Int. J. Metalcast. 13, 407–416 (2019)

    Article  CAS  Google Scholar 

  3. A.K. Dahle, D.H. Stjohn, Rheological behaviour of the mushy zone and its effect on the formation of casting defects during solidification. Acta Mater. 47, 31–41 (1998)

    Article  Google Scholar 

  4. M. Pokorny, C. Monroe, C. Beckermann et al., Prediction of hot tear formation in a magnesium alloy permanent mold casting. Int. J. Metalcast. 2, 41–53 (2008)

    Article  CAS  Google Scholar 

  5. D. Warrington, D.G. Mccartney, Development of a new hot-cracking test for aluminium alloys. Cast Metals. 2, 134–143 (1989)

    Article  Google Scholar 

  6. Y. Liu, J. Xie, X.F. Guo, Recent progress in the research of Mg–Zn based heat resistant cast magnesium alloys. South. Met. 3, 20–26 (2010)

    Google Scholar 

  7. L. Zhou, Y.D. Huang, P.L. Mao, et al. Investigations on hot tearing of Mg–Zn–(Al) alloys, in Magnesium Technology 2011 (2011), pp. 125–130

    Google Scholar 

  8. L. Zhou, Y.D. Huang, P.L. Mao et al., Influence of composition on hot tearing in binary Mg–Zn alloys. Cast. Met. 24, 170–176 (2011)

    Google Scholar 

  9. L. Bichler, A. Elsayed, K. Lee et al., Influence of mold and pouring temperatures on hot tearing susceptibility of AZ91D magnesium alloy. Int. J. Metalcast. 2, 43–55 (2008)

    Article  CAS  Google Scholar 

  10. Z. Liu, S.B. Zhang, P.L. Mao et al., Effects of Y on hot tearing susceptibility of Mg–Zn–Y–Zr alloys. Trans. Nonferrous Met. Soc. China 24, 907–914 (2014)

    Article  CAS  Google Scholar 

  11. Z. Wang, Y.Z. Li, F. Wang et al., Hot tearing susceptibility of Mg–xZn–2Y alloys. Trans. Nonferr. Met. Soc. China 26, 3115–3122 (2016)

    Article  CAS  Google Scholar 

  12. Z. Wang, J.F. Song, Y.D. Huang et al., An investigation on hot tearing of Mg–4.5Zn–(0.5Zr) alloys with Y additions. Metall. Mater. Trans. A 46, 2108–2118 (2015)

    Article  CAS  Google Scholar 

  13. Z.J. Zhou, Z. Liu, Y. Wang et al., Investigations on the effect of grain size on hot tearing susceptibility of MgZn1Y2 alloy. Mater. Res. Express 5, 056511 (2018)

    Article  Google Scholar 

  14. H.M. Zhu, G. Sha, J.W. Liu et al., Microstructure and mechanical properties of Mg–6ZnxCu–0.6Zr (wt%) alloys. J. Alloys Compd. 509, 3526–3531 (2011)

    Article  CAS  Google Scholar 

  15. J. Buha, T. Ohkubo, Natural Aging in Mg–Zn(–Cu) Alloys. Metall. Mater. Trans. A (Phys. Metall. Mater. Sci.) 39, 2259–2273 (2008)

    Article  Google Scholar 

  16. Z. Wang, Y.Z. Li, F. Wang et al., Effect of Cu additions on microstructure, mechanical properties and hot-tearing susceptibility of Mg-6Zn-0.6Zr alloys. J. Mater. Eng. Perform. 25, 5530–5539 (2016)

    Article  CAS  Google Scholar 

  17. P. Gunde, A. Schiffl, P.J. Uggowitzer, Influence of yttrium additions on the hot tearing susceptibility of magnesium–zinc alloys. Mater. Sci. Eng. A 527, 7074–7079 (2010)

    Article  Google Scholar 

  18. S. Yao, Z. Wang, F. Wang et al., An investigation on hot tearing of AZ91 alloys with yttrium additions. Mater. Res. Express 6, 016554 (2018)

    Article  Google Scholar 

  19. C.M. Zhang, X. Hui, K.F. Yao et al., Formation of high strength Mg–Cu–Zn–Y alloys. Mater. Sci. Eng. A 491, 470–475 (2008)

    Article  Google Scholar 

  20. Z.S. Zhen, N. Hort, Y.D. Huang et al., Quantitative determination on hot tearing in Mg–Al binary alloys. Mater. Sci. Forum 618–619, 533–540 (2009)

    Article  Google Scholar 

  21. Z. Wang, Y.D. Huang, A. Srinivasan et al., Hot tearing susceptibility of binary Mg–Y alloy castings. Mater. Des. 47, 90–100 (2013)

    Article  CAS  Google Scholar 

  22. Z.S. Zhen, N. Hort, O. Utke et al., Investigations on hot tearing of Mg-Al binary alloys by using a new quantitative method, in Magnesium Technology 2009, ed. by E.A. Nyberg, S.R. Agnew, N.R. Neelameggham, M.O. Pekguleryuz (TMS, San Francisco, 2009), pp. 105–110

    Google Scholar 

  23. L. Backerud, G. Chai, J. Tamminen, Solidification characteristics of aluminum alloys. Foundry Alloys 2, 74–78 (1990)

    Google Scholar 

  24. D.H. Hou, S.M. Liang, R.S. Chen et al., Effects of Sb content on solidification pathways and grain size of AZ91 magnesium alloy. Acta Metall. Sin. (Engl. Lett.) 28, 115–121 (2015)

    Article  CAS  Google Scholar 

  25. D. Emadi, L.V. Whiting, S. Nafisi et al., Applications of thermal analysis in quality control of solidification processes. J. Therm. Anal. Calorim. 81, 235–242 (2005)

    Article  CAS  Google Scholar 

  26. W.S. Pellini, Strain theory of hot tearing. Foundry 80, 125–199 (1952)

    Google Scholar 

  27. C.H. Dickhaus, L. Ohm, S. Engler, Mechanical properties of solidifying shells of aluminum alloys. Trans. Am. Foundry Soc. 101, 677–684 (1994)

    Google Scholar 

  28. Z. Wang, Y. Zhou, Y.Z. Li et al., Hot tearing behaviors and in situ thermal analysis of Mg–7Zn–xCu–0.6Zr alloys. Trans. Nonferrous Met. Soc. China 28, 1504–1513 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks should be given to Innovation Talent Program in Sciences and Technologies for Young and Middle-aged Scientists of Shenyang (No. RC180111), Doctoral Scientific Research Foundation of Liaoning Province (No. 20170520033), National Natural Sciences Foundation of China (No. 51504153) and Key Common Technical Difficulties in the Innovation Challenge Competition (Ningbo) for their financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, G., Wang, Z., Qiu, W. et al. Effect of Yttrium on Hot Tearing Susceptibility of Mg–6Zn–1Cu–0.6Zr Alloys. Inter Metalcast 14, 179–190 (2020). https://doi.org/10.1007/s40962-019-00352-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-019-00352-x

Keywords

Navigation