Skip to main content
Log in

Failure Analysis and Hot Tearing Susceptibility of Stainless Steel CF3M

  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

Hot tear formation has been witnessed during the solidification of the ferrous alloy by pulling the columnar dendrites in the transverse direction. The hot tearing susceptibility of an alloy is influenced by solidification rate, microstructure and the stress/strain conditions. It is valuable to predict the occurrence of tearing in a casting. In this study, hot tearing susceptibility of stainless steel CF3M grade casting was investigated using the method of constrained T-shaped solidification shrinkage and inducing strain by pulling dendrites in a transverse direction. An experimental setup equipped with the real-time measurement of temperature, displacement and contraction/applied force during solidification at elevated temperature has been developed. In this study, the sectioning technique was adopted for residual stress measurement after casting solidification, wire electric discharge machining has been identified as a suitable method of cutting along with a coordinate measuring machine sufficiently accurate for measurement, and finite element modeling and analysis were performed to calculate the stress. A metallographic study using an optical microscope and scanning electron microscope was performed to evaluate macro- and microstructure at failure zone of the casting. The study aims to investigate crack morphology and differentiate hot tear from other types of cracks in order to troubleshoot effectively. Stress, strain and temperature data provide onset of hot tearing and provide a base for mathematical model and validation. The results show that the strain or strain rate is more critical for hot tearing than stress. The studies on residual stress show that the tensile stress is not required to generate hot tears, but only the tensile strain is sufficient to form a hot tear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Similar content being viewed by others

References

  1. J. Campbell, Castings (Butterworth and Heineman Ltd, Oxford, 1991)

    Google Scholar 

  2. C.L. Martin, D. Favier, M. Suery, Int. J. Plast. 15, 981–1008 (1999)

    Article  Google Scholar 

  3. Y. Wang, B. Sun, Q. Wang, Y. Zhu, W. Ding, Mater. Lett. 53, 35–39 (2002)

    Article  Google Scholar 

  4. O. Ludwig, J.M. Drezet, C.L. Martin, M. Suery, Metall. Mater. Trans. A 36, 1525–1535 (2005)

    Article  Google Scholar 

  5. M. Rappaz, J.-M. Drezet, M. Gremaud, Metall. Mater. Trans. 30A, 449–455 (1999)

    Article  Google Scholar 

  6. H.F. Bishop, C.G. Ackerlind, W.S. Pellini, Metallurgy and mechanics of hot tearing. AFS Trans. 60, 818–833 (1952)

    Google Scholar 

  7. B.G. Thomas, Modeling of Stress, Distortion and Hot Tearing ASM Handbook, Volume 15: Casting ASM Handbook Committee, pp. 449–461. https://doi.org/10.1361/asmhba0005238

  8. T.W. Clyne, G.J. Davies, A quantitative solidification test for castings and an evaluation of cracking in aluminium–magnesium alloys. Br. Foundryman 68, 238 (1975)

    Google Scholar 

  9. S. Li, D. Apelian, Hot tearing of aluminum alloys. Int. Metalcast. 5(1), 23–40 (2011). https://doi.org/10.1007/BF03355505

    Article  Google Scholar 

  10. N. Hatami, R. Babaei, M. Dadashzadeh, P. Davami, J. Mater. Process. Technol. 205, 506–513 (2008)

    Article  Google Scholar 

  11. J.Z. Zhu, J. Guo, M.T. Samonds, Int. J. Numer. Methods Eng. 87, 289–308 (2011)

    Article  Google Scholar 

  12. Z. Wang, J. Song, Y. Huang, A. Srinivasan, Z. Liu, K. Kainer et al., Metall. Mater. Trans. A 46, 2108–2118 (2015)

    Article  Google Scholar 

  13. M. Alvarez Vera, J.H. Garcia-Duarte, A. Juarrez-Hernandez, R.D. Mercado-Solis, A.G. Castillo, M.A.L. Hernandez-Rodriguez, Failure analysis of Co–Cr hip resurfacing prosthesis during solidification. Case Stud. Eng. Fail. Anal. 1, 1–5 (2013)

    Article  Google Scholar 

  14. M. Pokorny, C. Monroe, C. Beckermann et al., Int. Metalcast. 2, 41 (2008). https://doi.org/10.1007/BF03355435

    Article  Google Scholar 

  15. C.A. Monroe, C. Beckermann, J. Klinkhammer, Modeling of Casting, Welding, and Advanced Solidification Process-XII (TMS, Warrendale, 2009), pp. 313–320

    Google Scholar 

  16. S. Kou, JOM 55, 37 (2003). https://doi.org/10.1007/s11837-003-0137-4

    Article  Google Scholar 

  17. S. Kou, Acta Mater. 88, 366–374 (2015)

    Article  Google Scholar 

  18. Z. Lin, A. Monroe, C.K. Huff, R.C. Beckermann, Prediction of hot tear defects in steel castings using a damage based model. Model. Cast. Weld. Adv. Solid. Process. 12, 329–336 (2009)

    Google Scholar 

  19. J.C. Hamaker, W.P. Wood, Influence of phosphorus on hot tear resistance of plain and alloy gray iron. AFS Trans. 60, 501–510 (1952)

    Google Scholar 

  20. J.V. Eeghem, A.D. Sy, A contribution to understanding the mechanism of hot tearing of cast steel. AFS Trans. 73, 282–291 (1965)

    Google Scholar 

  21. S.A. Metz, M.C. Flemings, A fundamental study of hot tearing. AFS Trans. 78, 453–460 (1970)

    Google Scholar 

  22. Y.F. Guven, J.D. Hunt, Hot-tearing in aluminum copper alloys. Cast. Met. 1, 104–111 (1988)

    Article  Google Scholar 

  23. Z.-Q. Wei, X.-R. Chen, H.-G. Zhong, Q.-J. Zhai, G. Wang, Hot tearing susceptibility of Fe–20.96Cr-2. 13Ni-0. 15N-4. 76Mn–0.01Mo duplex stainless steel. J. Iron Steel Res. Int. 24, 421–425 (2017)

    Article  Google Scholar 

  24. Z. Li, H. Zhong, Q. Sun, X. Zhengqi, Q. Zhai, Effect of cooling rate on hot-crack susceptibility of duplex stainless steel. Mater. Sci. Eng. A 506, 191–195 (2009)

    Article  Google Scholar 

  25. A. Stangeland, A. Mo, M. M’hamdi, D. Viano, C. Davidson, Thermal strain in the mushy zone related to hot tearing. Metall. Mater. Trans. 37, 705 (2006)

    Article  Google Scholar 

  26. H. Akhyar, V. Malau, P.T.Iswanto Suyitno, Hot tearing susceptibility of aluminum alloys using CRCM-horizontal mold. Results Phys. 7, 1030–1039 (2017)

    Article  Google Scholar 

  27. D.S. Bhiogade, S.M. Randiwe, A.M. Kuthe et al., Study of hot tearing in stainless steel CF3M during casting using simulation and experimental method. Int. Metalcast. 12, 331–342 (2018). https://doi.org/10.1007/s40962-017-0170-7

    Article  Google Scholar 

  28. A.S. Sabau, S. Mirmiran, S. Li et al., Hot-tearing assessment of multicomponent nongrain-refined Al–Cu alloys for permanent mold castings based on load measurements in a constrained mold (Met. Mater. Soc. ASM Int., Miner, 2018). https://doi.org/10.1007/s11663-018-1204-0

    Book  Google Scholar 

  29. R. Tuttle, Examination of steel castings for potential nucleation phases. Int. Metalcast. 4(3), 17–25 (2010). https://doi.org/10.1007/BF03355495

    Article  Google Scholar 

  30. A. Roger, Stainless steel: an introduction to their metallurgy and corrosion resistance. Dairy Food Environ. Sanit. 20(7), 506–517 (2000)

    Google Scholar 

  31. J. Thorborg, J. Klinkhammer, M. Heitzer, Transient and residual stresses in large castings, taking time effects into account. IOP Conf. Ser. Mater. Sci. Eng. 33 (2012). https://doi.org/10.1088/1757-899X/33/1/012050

  32. N.S. Rossini, M. Dassisti, K.Y. Benyounis, A.G. Olabi, Methods of measuring residual stresses in components. Mater. Des. 35, 572–588 (2012)

    Article  Google Scholar 

  33. G. Palumbo, V. Piglionico, Modelling residual stresses in sand-cast superduplex stainless steel. J. Mater. Process. Technol. (2014). https://doi.org/10.1016/j.jmatprotec.2014.11.006

    Google Scholar 

  34. M.B. Prime, Cross-Sectional Mapping of residual stresses by measuring the surface contour after a cut. J. Eng. Mater. Technol. 123(2), 162–168 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dheeraj S. Bhiogade.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhiogade, D.S., Randiwe, S.M. & Kuthe, A.M. Failure Analysis and Hot Tearing Susceptibility of Stainless Steel CF3M. Inter Metalcast 13, 166–179 (2019). https://doi.org/10.1007/s40962-018-0246-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-018-0246-z

Keywords

Navigation