Skip to main content
Log in

Impact of Chemotherapeutic Agents on PD-L1, CTLA-4, and VISTA Gene Expression in Cervical Cancer Cell Lines: An In Vitro Study

  • Original Article
  • Published:
Indian Journal of Gynecologic Oncology Aims and scope Submit manuscript

Abstract

Purpose

The study aims to understand how docetaxel and doxorubicin, two commonly used chemotherapeutic drugs, influence the expression of PD-L1, CTLA-4, and VISTA in cervical cancer cells.

Method

In this study, the CaSki cell line was cultured using standard cell culture techniques. The MTT test was employed to ascertain the half-maximal inhibitory concentration (IC50) and potency of chemotherapeutic agents: docetaxel and doxorubicin. We used qRT-PCR to investigate the expression of PD-L1, CTLA-4, and VISTA genes in the CaSki cell line after treatment.

Result

Doxorubicin significantly increased the expression of PD-L1 (P-value < 0.05) and CTLA-4 (P-value < 0.001) and decreased the expression of VISTA (P-value < 0.01) in the CaSki cell line, but docetaxel increased the expression of PD-L1 (P-value < 0.001), CTLA-4 (P-value < 0.001), and VISTA (P-value < 0.05).

Conclusion

Doxorubicin increased the expression of PD-L1 and CTLA-4, possibly creating an immunosuppressive cervical tumor environment. Combining immune checkpoint inhibitors with doxorubicin may counteract this effect. Docetaxel increased all three genes, indicating complex immune checkpoint regulation during chemotherapy. Further research is required to understand mechanisms and optimize combination therapies for enhanced cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of Data and Materials

In this article, we provide all available information; if additional explanations are required, please contact the corresponding author.

Abbreviations

APCs :

Antigen-presenting cells

CC :

Cervical cancer

CTLA-4 :

Cytotoxic T-lymphocyte antigen-4

DMSO :

Dimethyl sulfoxide

FBS :

Fetal bovine serum

HDI :

Human Development Index

ICIs :

Immune checkpoint inhibitors

ICs :

Intratumoral immune cells

irAEs :

Immune-related adverse events

MDSCs :

Myeloid-derived suppressor cells

PD-1 :

Programmed cell death protein-1

PD-L1 :

Programmed death-ligand 1

qRT-PCR :

Quantitative real-time PCR

RPMI-1640 :

Roswell Park Memorial Institute-1640

TILs :

Tumor-infiltrating lymphocytes

TME :

Tumor microenvironment

TTP :

Tristetraprolin

VECs :

Vascular endothelial cells

VISTA :

V-domain Ig suppressor of T cell activation

References

  1. Pimple S, Mishra G. Cancer cervix: epidemiology and disease burden. Cytojournal. 2022;19:21.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Momenimovahed Z, Mazidimoradi A, Maroofi P, Allahqoli L, Salehiniya H, Alkatout I. Global, regional and national burden, incidence, and mortality of cervical cancer. Cancer Reports. 2023;6(3): e1756.

    Article  PubMed  Google Scholar 

  3. Hassanian H, Asadzadeh Z, Baghbanzadeh A, Derakhshani A, Dufour A, Rostami Khosroshahi N, et al. The expression pattern of Immune checkpoints after chemo/radiotherapy in the tumor microenvironment. Front Immunol. 2022;13: 938063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Doghish AS, Ali MA, Elyan SS, Elrebehy MA, Mohamed HH, Mansour RM, et al. miRNAs role in cervical cancer pathogenesis and targeted therapy: Signaling pathways interplay. Pathol-Res Pract. 2023;244:154386.

    Article  CAS  PubMed  Google Scholar 

  5. De Felice F, Marchetti C, Palaia I, Ostuni R, Muzii L, Tombolini V, Panici PB. Immune check-point in cervical cancer. Crit Rev Oncol Hematol. 2018;129:40–3.

    Article  PubMed  Google Scholar 

  6. Chandrasekar SV, Singh A, Ranjan A. Overcoming resistance to immune checkpoint inhibitor therapy using calreticulin-inducing nanoparticle. Pharmaceutics. 2023;15(6):1693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Grau J-F, Farinas-Madrid L, Garcia-Duran C, Garcia-Illescas D, Oaknin A. Advances in immunotherapy in cervical cancer. Int J Gynecol Cancer. 2023;33(3):403–13.

    Article  PubMed  Google Scholar 

  8. Zhang Y, Zheng J. Functions of immune checkpoint molecules beyond immune evasion. In: Xu J, editor. Regulation of cancer immune checkpoints: molecular and cellular mechanisms and therapy. Singapore: Springer; 2020. p. 201–26.

    Chapter  Google Scholar 

  9. Han X, Chang WW, Xia X. Immune checkpoint inhibitors in advanced and recurrent/metastatic cervical cancer. Front Oncol. 2022;12: 996495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Webb ES, Liu P, Baleeiro R, Lemoine NR, Yuan M, Wang YH. Immune checkpoint inhibitors in cancer therapy. J Biomed Res. 2018;32(5):317–26.

    Article  CAS  PubMed  Google Scholar 

  11. Lin Q, Wang X, Hu Y. The opportunities and challenges in immunotherapy: Insights from the regulation of PD-L1 in cancer cells. Cancer Lett. 2023;569: 216318.

    Article  CAS  PubMed  Google Scholar 

  12. Teft WA, Kirchhof MG, Madrenas J. A molecular perspective of CTLA-4 function. Annu Rev Immunol. 2006;24:65–97.

    Article  CAS  PubMed  Google Scholar 

  13. Karpathiou G, Chauleur C, Mobarki M, Peoc’h M. The immune checkpoints CTLA-4 and PD-L1 in carcinomas of the uterine cervix. Pathol Res Pract. 2020;216(1): 152782.

    Article  CAS  PubMed  Google Scholar 

  14. Pakkala S, Owonikoko TK. Immune checkpoint inhibitors in small cell lung cancer. J Thorac Dis. 2018;10(Suppl 3):S460–7.

    Article  PubMed  PubMed Central  Google Scholar 

  15. ElTanbouly M, Zhao Y, Nowak E, Li J, Schaafsma E, Le Mercier I, et al. VISTA is a checkpoint regulator for naıve T cell quiescence and peripheral tolerance. Science. 2020;367:eaay0524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zou Y, Xu Y, Chen X, Zheng L. Advances in the application of immune checkpoint inhibitors in gynecological tumors. Int Immunopharmacol. 2023;117: 109774.

    Article  CAS  PubMed  Google Scholar 

  17. Kuang L, He Y. Potential value of V-domain Ig suppressor of T-cell activation for assessing progn osis in cervical cancer and as a target for therapy. Int J Clin Exp Pathol. 2020;13(1):26.

    PubMed  PubMed Central  Google Scholar 

  18. Kamura T, Ushijima K. Chemotherapy for advanced or recurrent cervical cancer. Taiwan J Obstet Gynecol. 2013;52(2):161–4.

    Article  PubMed  Google Scholar 

  19. Karimi G, Ramezani M, Abdi A. Protective effects of lycopene and tomato extract against doxorubicin-induced cardiotoxicity. Phytother Res. 2005;19(10):912–4.

    Article  CAS  PubMed  Google Scholar 

  20. Kim DJ, Jang JH, Ham S-Y, Choi SH, Park SS, Jeong SY, et al. Doxorubicin inhibits PD-L1 expression by enhancing TTP-mediated decay of PD-L1 mRNA in cancer cells. Biochem Biophys Res Commun. 2020;522(2):402–7.

    Article  CAS  PubMed  Google Scholar 

  21. Nagao S, Fujiwara K, Oda T, Ishikawa H, Koike H, Tanaka H, Kohno I. Combination chemotherapy of docetaxel and carboplatin in advanced or recurrent cervix cancer. A pilot study. Gynecol Oncol. 2005;96(3):805–9.

    Article  CAS  PubMed  Google Scholar 

  22. Gupta R, Kadhim MM, Jalil AT, Alasheqi MQ, Alsaikhan F, Mukhamedova NK, et al. The interactions of docetaxel with tumor microenvironment. Int Immunopharmacol. 2023;119: 110214.

    Article  CAS  PubMed  Google Scholar 

  23. Majidi M, Safaee S, Amini M, Baghbanzadeh A, Hajiasgharzadeh K, Hashemzadeh S, et al. The effects of chemotherapeutic drugs on PD-L1 gene expression in breast cancer cell lines. Med Oncol. 2021;38:1–8.

    Article  Google Scholar 

  24. Marzagalli M, Ebelt ND, Manuel ER, editors. Unraveling the crosstalk between melanoma and immune cells in the tumor microenvironment. Semin Cancer Biol. 2019;59:236–50. Elsevier.

  25. Marhelava K, Pilch Z, Bajor M, Graczyk-Jarzynka A, Zagozdzon R. Targeting negative and positive immune checkpoints with monoclonal antibodies in therapy of cancer. Cancers. 2019;11(11):1756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Perrier A, Didelot A, Laurent-Puig P, Blons H, Garinet S. Epigenetic mechanisms of resistance to immune checkpoint inhibitors. Biomolecules. 2020;10(7):1061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pech MF, Fong LE, Villalta JE, Chan LJ, Kharbanda S, O’Brien JJ, et al. Systematic identification of cancer cell vulnerabilities to natural killer cell-mediated immune surveillance. Elife. 2019;8: e47362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang W, Wu L, Zhang J, Wu H, Han E, Guo Q. Chemoimmunotherapy by combining oxaliplatin with immune checkpoint blockades reduced tumor burden in colorectal cancer animal model. Biochem Biophys Res Commun. 2017;487(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  29. Papadimitrakopoulou V, Gadgeel SM, Borghaei H, Gandhi L, Patnaik A, Powell SF, et al. First-line carboplatin and pemetrexed (CP) with or without pembrolizumab (pembro) for advanced nonsquamous NSCLC: Updated results of KEYNOTE-021 cohort G. Am Soc Clin Oncol; 2017;35(Suppl 15):9094–9094. https://doi.org/10.1200/JCO.2017.35.15_suppl.9094

    Article  Google Scholar 

  30. Meng Y, Liang H, Hu J, Liu S, Hao X, Wong MSK, et al. PD-L1 expression correlates with tumor infiltrating lymphocytes and response to neoadjuvant chemotherapy in cervical cancer. J Cancer. 2018;9(16):2938.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Liang Y, Yu M, Zhou C, Zhu X. Variation of PD-L1 expression in locally advanced cervical cancer following neoadjuvant chemotherapy. Diagn Pathol. 2020;15:1–8.

    Article  Google Scholar 

  32. Lesterhuis WJ, Salmons J, Nowak AK, Rozali EN, Khong A, Dick IM, et al. Synergistic effect of CTLA-4 blockade and cancer chemotherapy in the induction of anti-tumor immunity. PLoS ONE. 2013;8(4): e61895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ariyan CE, Brady MS, Siegelbaum RH, Hu J, Bello DM, Rand J, et al. Robust antitumor responses result from local chemotherapy and CTLA-4 blockade. Cancer Immunol Res. 2018;6(2):189–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. O’Malley DM, Neffa M, Monk BJ, Melkadze T, Huang M, Kryzhanivska A, et al. Dual PD-1 and CTLA-4 checkpoint blockade using balstilimab and zalifrelimab combination as second-line treatment for advanced cervical cancer: an open-label phase II study. J Clin Oncol. 2022;40(7):762.

    Article  PubMed  Google Scholar 

  35. Wu C, Cao X, Zhang X. VISTA inhibitors in cancer immunotherapy: a short perspective on recent progresses. RSC Med Chem. 2021;12(10):1672–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li L, Xu X-T, Wang L-L, Qin S-B, Zhou J-Y. Expression and clinicopathological significance of Foxp3 and VISTA in cervical cancer. Am J Transl Res. 2021;13(9):10428.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Li N, Yang S, Ren Y, Tai R, Liu H, Wang Y, et al. Chemotherapy induces immune checkpoint VISTA expression in tumor cells via HIF-2alpha. Biochem Pharmacol. 2023;210: 115492.

    Article  CAS  PubMed  Google Scholar 

  38. Şener GY, Sütcüoğlu O, Öğüt B, Güven DC, Kavuncuoğlu A, Özdemir N, et al. Comparison of PD-L1 and VISTA expression status in primary and recurrent/refractory tissue after (chemo) radiotherapy in head and neck cancer. Strahlenther Onkol. 2023;199(8):761–72.

    Article  PubMed  Google Scholar 

  39. Akdoğan O, Sütcüoğlu O, Öğüt B, Akyürek N, Özdemir N, Özet A, Yazıcı O. Effect of neoadjuvant therapy on tumor tissue PD-L1 and VISTA expression levels in non-small-cell lung cancer. Immunotherapy. 2022;14(14):1121–31.

    Article  PubMed  Google Scholar 

  40. Mauricio D, Zeybek B, Tymon-Rosario J, Harold J, Santin AD. Immunotherapy in Cervical Cancer. Curr Oncol Rep. 2021;23(6):61.

    Article  CAS  PubMed  Google Scholar 

  41. Sharon E, Streicher H, Goncalves P, Chen HX. Immune checkpoint inhibitors in clinical trials. Chin J Cancer. 2014;33(9):434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Alturki NA. Review of the Immune Checkpoint Inhibitors in the Context of Cancer Treatment. J Clin Med. 2023;12(13):4301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We express our gratitude to the research staff at the Immunology Research Center, Tabriz University of Medical Sciences, for their invaluable assistance in conducting the experiments.

Funding

No funding.

Author information

Authors and Affiliations

Authors

Contributions

HN and BB conceptualized the study and contributed to its design. BB provided essential biological materials and reagents. HN, ZV, MAY, and HA conducted the experiments. MAY and AJ drafted the initial manuscript. AM, DSH, JAH, MAY, and AJ contributed to data analysis and revised and edited the manuscript. BB supervised the study.

Corresponding author

Correspondence to Behzad Baradaran.

Ethics declarations

Competing Interests

No competing interests.

Ethics Approval and Consent to Participate

Tabriz University of Medical Science’s medical ethics committee approved the investigation, and the ethics identification number is IR.TBZMED.VCR.REC.1401.118. This study was carried out in compliance with the Helsinki Declaration’s principles.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasiri, H., Ahmadpour Youshanlui, M., Valedkarimi, Z. et al. Impact of Chemotherapeutic Agents on PD-L1, CTLA-4, and VISTA Gene Expression in Cervical Cancer Cell Lines: An In Vitro Study. Indian J Gynecol Oncolog 22, 65 (2024). https://doi.org/10.1007/s40944-024-00828-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40944-024-00828-7

Keywords

Navigation