Skip to main content

Advertisement

Log in

Trace element distribution in pristine Patagonia River sediments using multivariable analysis

  • Original Article
  • Published:
Sustainable Water Resources Management Aims and scope Submit manuscript

Abstract

Surface sediments may serve as a metal sink that can release metals to the water body causing negative effects to the ecosystems. The analysis of trace-level metals in sediments allows detect pollution that might not be detected in water samples. In this study, the distribution and concentration of selected elements in surface sediment samples were determined in Pichileufu River in Patagonia, Argentina, to corroborate their pristine characteristic. The surface sediment samples from 6 points along the river were collected using the method across and throughout the waterway. All of them were analyzing first by X-ray fluorescence (XRF) determining the major element concentrations. Then, they were acid digested and the selected trace element (V, Cr, Ni, Cu, Mo, Cd and Pb) concentrations were determined by inductively coupled plasma mass spectrometer (ICP-MS). The correlation analysis and principal component analysis indicated that the major and minor elemental compositions allowed quickly identified specific sample that differ from the rest and understood the reason. The obtained results show that all the selected element concentrations were below the PEL of the sediment quality guidelines. There were no significant differences between the selected element contents in the surface sediments of the Patagonia River among the years. The observed differences in the 3-site samples may be related to that it is a stream of the main river. Therefore, this study result could work as reference pristine site. The study highlights the need to make tremendous efforts to monitor and control trace elemental pollution in the Pichileufu Patagonia River to avoid their future contamination from both anthropogenic and natural sources. Among the natural factors, it is very important to consider the desertification process suffered by these steppe areas. In this context, the presented results could be used as background concentrations or as starting point for these studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Abdusamadzoda D, Abdushukurov DA, Zinicovscaia I, Duliu OG, Vergel KN (2020) Assessment of the ecological and geochemical conditions in surface sediments of the Varzob river, Tajikistan. Microchem J 158:105173. https://doi.org/10.1016/j.microc.2020.105173

    Article  Google Scholar 

  • Arshad K, Aqeel M, Noman A, Nazir A, Mahmood A, Rizvi ZF, Sarfraz W, Hyder S, Zaka S, Khalid N (2023) Ecological health risk assessment of microplastics and heavy metals in sediments, water, hydrophytes (Alternanthera philoxeroides, Typha latifolia, and Ipomoea carnea), and fish (Labeo rohita) in Marala wetlands in Sialkot, Pakistan. Environ Sci Pollut Res 30:41272–41285. https://doi.org/10.1007/s11356-023-25142-1

    Article  Google Scholar 

  • Baldantoni D, Maisto G, Bartoli G, Alfani A (2005) Analyses of three native aquatic plant species to assess spatial gradients of lakes trace element contamination. Aquat Bot 83(1):48–60. https://doi.org/10.1016/j.aquabot.2005.05.006

    Article  Google Scholar 

  • Batley GE, Simpson S (2013) Sediment quality guidelines. In: Férard JF, Blaise C (eds) Encyclopedia of aquatic ecotoxicology. Springer, Dordrecht, pp 1015–1024

    Chapter  Google Scholar 

  • Baubekova A, Akindykova A, Mamirova A, Dumat C, Jurjanz S (2021) Evaluation of environmental contamination by toxic trace elements in Kazakhstan based on reviews of available scientific data. Environ Sci Pollut Res 28:43315–43328. https://doi.org/10.1007/s11356-021-14979-z

    Article  Google Scholar 

  • CCME (2001) Canadian sediment quality guidelines for the protection of aquatic life: summary tables; Canadian environmental guidelines. Canadian Council of Ministers of the Environment, Winnipeg.

  • Chen JS, Wang FY (1995) Chemical composition of river particulates of Eastern China. GeoJournal 40:31–37

    Google Scholar 

  • Chuan OM, Yunus K (2019) Sediment and organisms as marker for metal pollution. In: Fouzia HB (ed) Monitoring Mar pollution. ISBN978-1-83880-812-9. https://doi.org/10.5772/intechopen.85569

  • Couto CMCM (2022) Ribeiro C (2022) Pollution status and risk assessment of trace elements in Portuguese water, soils, sediments, and associated biota: a trend analysis from the 80s to 2021. Environ Sci Pollut Res 29:48057–48087. https://doi.org/10.1007/s11356-022-20699-9

    Article  Google Scholar 

  • Decena SCP, Arguelles MS, Robel LL (2018) Assessing heavy metal contamination in surface sediments in an urban river in the Philippines. Polish J Environ Stud 27(5):1983–1995. https://doi.org/10.15244/pjoes/75204

    Article  Google Scholar 

  • Edokpayi JN, Odiyo JO, Popoola OE, Msagati TA (2016) Assessment of Trace metals contamination of surface water and sediment: a case study of Mvudi River, South Africa. Sustainability 8(135):1–13. https://doi.org/10.3390/su8020135

    Article  Google Scholar 

  • Ferati F, Kerolli-Mustafa M, Kraja-Ylli A (2015) Assessment of heavy metal contamination in water and sediments of Trepça and Sitnica rivers, Kosovo, using pollution indicators and multivariate cluster analysis. Environ Monit Assess 187(6):338. https://doi.org/10.1007/s10661-015-4524-4

    Article  Google Scholar 

  • Frančišković-Bilinski S (2007) An assessment of multielemental composition in stream sediments of Kupa River drainage basin, Croatia for evaluating sediment quality guidelines. Fresenius Environ Bull 16(5):561–575

    Google Scholar 

  • Gashi F, Frančišković-Bilinski S, Bilinski H, Troni N, Bacaj M, Jusufi F (2011) Establishing of monitoring network on Kosovo rivers: preliminary measurements on the four main rivers (Drini i Bardhë, Morava e Binçës, Lepenc and Sitnica). Environ Monit Assess 175:279–289

    Article  Google Scholar 

  • Guo R, He X (2013) Spatial variations and ecological risk assessment of heavy metals in surface sediments on the upper reaches of Hun River Northeast China. Environ Earth Sci 70:1083–1090. https://doi.org/10.1007/s12665-012-2196-8

    Article  Google Scholar 

  • Hübner KR, Astin B, Herbert JH (2009) Comparison of sediment quality guidelines (SQCs) for the assessment of metal contamination in marine and estuarine environments. Critical review. J Environ Monit 11:713–722. https://doi.org/10.1039/b818593j

    Article  Google Scholar 

  • IPCC (2019) Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. In: Shukla PR, Skea J, Calvo Buendia E, Masson-Delmotte V, Pörtner H-O, Roberts DC, Zhai P, Slade R, Connors S, van Diemen R, Ferrat M, Haughey E, Luz S, Neogi S, Pathak M, Petzold J, Portugal Pereira J, Vyas P, Huntley E, Kissick K, Belkacemi M, Malley J (eds) (in press)

  • Kadhum SA, Abed SA, Ewaid SH, Chabuk A, Al-Ansari A, Jassim AK (2020) Multivariate analysis and geochemical assessment of heavy metals pollution in surface sediment from Euphrates River, Iraq. Pollut Res 39:S262–S267

    Google Scholar 

  • Li Z, Liu J, Chen H, Li Q, Yu C, Huang X (2020) Water environment in the Tibetan Plateau: heavy metal distribution analysis of surface sediments in the Yarlung Tsangpo River Basin. Environ Geochem Health 42:2451–2469. https://doi.org/10.1007/s10653-019-00409-0

    Article  Google Scholar 

  • Malinowski ER (1991) Factor analysis in chemistry, 2nd edn. Wiley-Interscience

    Google Scholar 

  • Martin J, Meybeck M (1979) Elemental mass-balance of material carried by major world rivers. Mar Chem 7(3):178–206

    Article  Google Scholar 

  • Meybeck M (2013) Heavy metal contamination in rivers across the globe: an indicator of complex interactions between societies and catchments. In: IAHS-AISH Proc Rep, vol 361(July), p 3–16. Understanding Freshwater Quality Problems in a Changing World

  • Nawrot N, Wojciechowska E, Mohsin M, Kuittinen S, Pappinen A, Rezania S (2021) Trace metal contamination of bottom sediments: a review of assessment measures and geochemical background determination methods. Minerals 11(8):872. https://doi.org/10.3390/min11080872

    Article  Google Scholar 

  • Niu Y, Chen F, Li Y, Ren B (2021) Trends and sources of heavy metal pollution in global river and lake sediments from 1970 to 2018. In: de Voogt P (ed) Reviews of environmental contamination and toxicology, vol 257. Springer, Cham. https://doi.org/10.1007/398_2020_59

  • Osakwe JO, Adowei P, Jnr MH (2014) Evaluation of heavy metal species in bottom sediments from Imo River system, Southeastern Nigeria. Res J Chem Sci 4(6):23–30

    Google Scholar 

  • Panigatti JL (2010) Argentina 200 años, 200 suelos. Ed. INTA Buenos Aires. ISBN 978-987-1623-85-3

  • Pandey J, Singh R (2017) Heavy metals in sediments of Ganga River: up- and downstream urban influences. Appl Water Sci 7:1669–1678. https://doi.org/10.1007/s13201-015-0334-7

    Article  Google Scholar 

  • Pavoni E, Crosera M, Petranich E, Faganeli J, Klun K, Oliveri P, Covelli S, Adami G (2021) Distribution, mobility and fate of trace elements in an estuarine system under anthropogenic pressure: the case of the Karstic Timavo River (Northern Adriatic Sea, Italy). Estuar Coasts 44:1831–1847. https://doi.org/10.1007/s12237-021-00910-9

    Article  Google Scholar 

  • Protano C, Zinna L, Giampaoli S, Romano Spica V, Chiavarini S, Vitali M (2014) Heavy metal pollution and potential ecological risks in rivers: a case study from Southern Italy. Bull Environ Contam Toxicol 92:75–80. https://doi.org/10.1007/s00128-013-1150-0

    Article  Google Scholar 

  • Raju KV, Somashekar R, Prakash K (2012) Heavy metal status of sediment in river Cauvery, Karnataka. Environ Monit Assess 184(1):361–437. https://doi.org/10.1007/s10661-011-1973-2

    Article  Google Scholar 

  • Rakib MRJ, Rahman MA, Onyena AP, Kumar R, Sarker A, Hossain MB, Islam ARMT, Islam MS, Rahman MM, Jolly YN, Idris AM, Ali MM, Bilal M, Sun X (2022) A comprehensive review of heavy metal pollution in the coastal areas of Bangladesh: abundance, bioaccumulation, health implications, and challenges. Environ Sci Pollut Res 29:67532–67558. https://doi.org/10.1007/s11356-022-22122-9

    Article  Google Scholar 

  • Ribeiro Carvalho MA, Botero WG, de Oliveira LC (2022) Natural and anthropogenic sources of potentially toxic elements to aquatic environment: a systematic literature review. Environ Sci Pollut Res 29:51318–51338. https://doi.org/10.1007/s11356-022-20980-x

    Article  Google Scholar 

  • Sakan S, Frančišković-Bilinski S, Đorđević D, Popović A, Škrivanj S, Bilinski H (2020) Geochemical fractionation and risk assessment of potentially toxic elements in sediments from Kupa River, Croatia. Water 12(7):2024. https://doi.org/10.3390/w12072024

    Article  Google Scholar 

  • Sakan S, Grñeti I, Đorđević D (2007) Distribution and fractionation of heavy metals in the Tisa (Tisza) river sediments. Environ Sci Pollut Res 14(4):229–236. https://doi.org/10.1065/espr2006.05.304

    Article  Google Scholar 

  • Salah EAM, Zaidan TA, Al-Rawi AS (2012) Assessment of heavy metals pollution in the sediments of Euphrates River, Iraq. J Water Res Prot 4:1009–1023. https://doi.org/10.4236/jwarp.2012.412117

    Article  Google Scholar 

  • Salati S, Moore F (2010) Assessment of heavy metal concentration in the Khoshk River water and sediment, Shiraz, Southwest Iran. Environ Monit Assess 164:677–689. https://doi.org/10.1007/s10661-009-0920-y

    Article  Google Scholar 

  • Savenko VS (2006) Principal features of the chemical composition of suspended load in world rivers. Geography 407(2):450–454. https://doi.org/10.1134/S1028334X06030238

    Article  Google Scholar 

  • Shanbehzadeh S, Dastjerdi MV, Hassanzadeh A, Kiyanizadeh T (2014) Heavy metals in water and sediment: a case study of Tembi River. J Environ Public Health 2014:1–5. https://doi.org/10.1155/2014/858720

    Article  Google Scholar 

  • Smith SL, MacDonald DD, Keenleyside KA, Ingersoll CG, Field J (1996) A preliminary evaluation of sediment quality assessment values for freshwater ecosystems. J Great Lakes Res 22:624–638

    Article  Google Scholar 

  • Sorokina OA (2021) Major and trace element geochemistry of bulk composition of recent sediments from upper and middle Amur River (Eastern Siberia, Russia): description of sorting and transporting processes of river sediments. Environ Earth Sci 80:253. https://doi.org/10.1007/s12665-021-09526-5

    Article  Google Scholar 

  • Sugumaran D, Blake WH, Millward GE, Yusop Z, Yusoff ARM, Mohamad NA, Nainar A, Annammala KV (2023) Composition of deposited sediment and its temporal variation in a disturbed tropical catchment in the Kelantan river basin, Peninsular Malaysia. Environ Sci Pollut Res 30:71881–71896. https://doi.org/10.1007/s11356-022-19904-6

    Article  Google Scholar 

  • Wold S (1987) Principal component analysis. Chemom Intell Lab Syst 2:37–52

    Article  Google Scholar 

  • Tomczyk-Wydrych I, Swiercz A (2021) Methods of management of bottom sediments from selected water reservoirs - a literature review. Geologos 27(2):127–134. https://doi.org/10.2478/logos-2021-0013

    Article  Google Scholar 

  • USEPA. Acid digestion of sediments, sludges, and soils method 3050B. http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/3050b.pdf

  • USEPA (1996) “Method 3050B: acid digestion of sediments, sludges, and soils,” revision 2. Washington, DC. https://www.epa.gov/esam/epa-method-3050b-acid-digestion-sediments-sludges-and-soils

  • USEPA (1998) "Method 6020A (SW-846): inductively coupled plasma-mass spectrometry," revision 1. https://19january2017snapshot.epa.gov/homeland-security-research/epa-method-6020a-sw-846-inductively-coupled-plasma-mass-spectrometry_.html

  • USEPA (2006a) Framework for developing suspended and bedded sediments (SABS) water quality criteria. U.S. Environmental Protection Agency, Washington DC. EPA-822-R-06-001

  • USEPA (2006b) Watershed assessment of river stability & sediment supply (WARSSS) Version 1.0. U.S. Environmental Protection Agency, Office of Water, Washington, DC

  • USEPA (2007) “Method 3051A (SW-846): microwave assisted acid digestion of sediments, sludges, and oils,” revision 1. Washington, DC. https://www.epa.gov/esam/us-epa-method-3051a-microwave-assisted-acid-digestion-sediments-sludges-and-oils

  • Valentine PC (2019) Sediment classification and the characterization, identification, and mapping of geologic substrates for the glaciated Gulf of Maine seabed and other terrains, providing a physical framework for ecological research and seabed management. U.S. Geological Survey Scientific Investigations Report, vol 5073, p 37. https://doi.org/10.3133/sir20195073

  • Varol M, Sen B (2012) Assessment of nutrient and heavy metal contamination in surface water and sediments of the upper Tigris River, Turkey. CATENA 92:1–10. https://doi.org/10.1016/j.catena.2011.11.011

    Article  Google Scholar 

  • Viers J, Dupré B, Gaillardet J (2009) Chemical composition of suspended sediments in World Rivers: new insights from a new database. Sci Total Environ 407:853–868. https://doi.org/10.1016/j.scitotenv.2008.09.053

    Article  Google Scholar 

  • Vukovic D, Stankovic SJ, Vukovic Z, Jankoviv K (2014) Transport and storage of heavy metals in the Sava River Basin in Serbia. J Serbian Chem Soc 79(3):379–387. https://doi.org/10.2298/JSC130128085V

    Article  Google Scholar 

  • Wang Y, Yang Z, Shen Z, Tang Z, Niu J, Gao F (2011) Assessment of heavy metals in sediments from a typical catchment of the Yangtze River, China. Environ Monit Assess 172(1–4):407–417. https://doi.org/10.1007/s10661-010-1343-5

    Article  Google Scholar 

Download references

Acknowledgements

The financial supports from Comisión Nacional de Energía Atómica (CNEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ministerio de Ciencia, Tecnología e Innovación Productiva, Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) and International Atomic Energy Agency (IAEA) are greatefully acknowledged. The authors would like to thank Pedro F. Temporetti from Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), CONICET, San Carlos de Bariloche, Argetina, for the sediment sampling procedure.

Funding

This work was supported by the following national organizations: Comisión Nacional de Energía Atómica (CNEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET-PIP 2021–0989), Ministerio de Ciencia, Tecnología e Innovación Productiva, Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT-PFI-2021-RN07) and International Atomic Energy Agency (IAEA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Nassini.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nassini, D., De Micco, G. & Bohé, A.E. Trace element distribution in pristine Patagonia River sediments using multivariable analysis. Sustain. Water Resour. Manag. 9, 199 (2023). https://doi.org/10.1007/s40899-023-00972-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40899-023-00972-6

Keywords

Navigation