Skip to main content

Advertisement

Log in

Application of GIS-based PROMETHEE data mining technique to geoelectrical-derived parameters for aquifer potentiality assessment in a typical hardrock terrain Southwestern Nigeria

  • Original Article
  • Published:
Sustainable Water Resources Management Aims and scope Submit manuscript

Abstract

Groundwater potentiality assessment is an effective tool for groundwater management. Data mining modeling techniques have been efficacious in this regard. This study explored the potential of a GIS-based PROMETHEE method in the field of groundwater hydrology. The approach was applied to model aquifer potential conditioning factors derived from interpreted geoelectrical parameters. 68 depth sounding (VES) data locations were identified in Ipinsa, a typical multifaceted geologic hardrock terrain. The acquired VES data were quantitatively interpreted to determine the subsurface lithologic parameters in the form of resistivity and thickness. The interpreted results were used to derive the groundwater potential conditioning factors (GPCFs), namely: longitudinal conductance (Lc), transverse resistance (TR), transmissivity (T), reflection coefficient (Rc) and recharge rate (Re). Using the derived geoelectrical-based GPCFs values, the GPCFs themes were produced in the GIS platform. The produced GPCFs themes were multi-critically analyzed using the mechanism of Python programming-based Preference Ranking Organization Method for Enrichment Evaluations (PROMETHEE-II) data mining model algorithm to produce groundwater potentiality indexing (GPI) map. Furthermore, to compare the performance of the (PROMETHEE-II) data mining model result, multi-criteria decision analysis-analytic hierarchy process (MCDA-AHP) model was applied. The efficiency of the PROMETHEE-II and MCDA-AHP-based GPI maps were evaluated using well data records. The results of the well data correlation with the predictive model maps show regression coefficients of 78% and 75% for PROMETHEE-II and MCDA-AHP data mining models, respectively. These results show that both models have good performance in prediction of groundwater potential zones, with the PROMETHEE-II as a better alternative. These maps and models could be used as future planning tool and part of decision support for decision making for locating appropriate positions of new productive wells in the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abdullah L, Chan W, Afshari A (2019) Application of PROMETHEE method for green supplier selection: a comparative result based on preference functions. J Ind Eng Int 15:271–285. https://doi.org/10.1007/s40092-018-0289-z

    Article  Google Scholar 

  • Abiola O, Enikanselu PA, Oladapo MI (2009) Groundwater potential and aquifer protective capacity of overburden units in Ado-Ekiti, southwestern Nigeria. Int J Phys Sci 4(3):120–132

    Google Scholar 

  • Adeyeye OA, Ikpokonte EA, Arabi SA (2019) GIS-based groundwater potential mapping within Dengi area, North Central Nigeria Egypt. J Remote Sens Space Sci 22(2):175–181

  • Adiat KAN, Nawawi MNM, Abdullah K (2012) Assessing the accuracy of GIS-based elementary multi criteria decision analysis as a spatial prediction tool–A case of predicting potential zones of sustainable ground water resources. J Hydrol 440–441:75–89

  • Adiat KAN, Nawawi MNM, Abdullah K (2013) Application of multi-criteria decision analysis to geoelectric and geologic parameters for spatial prediction of groundwater resources potential and aquifer evaluation. Pure Appl Geophys 170:453–471. https://doi.org/10.1007/s00024-012-0501-9

    Article  Google Scholar 

  • Akinlalu AA, Adegbuyiro A, Adiat KAN, Akeredolu BE, Lateef WY (2017) Application of multi-criteria decision analysis in prediction of groundwater resources potential: a case of Oke-Ana, Ilesa Area, Southwestern, Nigeria. NRIAG J Astron Geophys 6:182–200

    Article  Google Scholar 

  • Akinlalu AA, Mogaji KA, Adebodun TS (2021) Assessment of aquifer vulnerability using a developed “GODL” method (modified GOD model) in a schist belt environ, Southwestern Nigeria. Environ Monit Assess 193:199

  • Akintorinwa OJ, Atitebi MO, Akinlalu AA (2020) Hydrogeophysical and aquifer vulnerability zonation of a typical basement complex terrain: a case study of Odode Idanre Southwestern, Nigeria. Heliyon 6:e04549

    Article  Google Scholar 

  • Albadvi A, Chaharsooghi SK, Esfahanipour A (2007) Decision making in stock trading: an application of PROMETHEE. Eur J Oper Res 177:673–683

    Article  Google Scholar 

  • Alhassan UD, Obiora DN, Okeke FN (2015) The assessment of aquifer potential and aquifer vulnerability of southern Paiko, North central Nigeria, using geoelectric method. Global J Pure Appl Sci 21(2015):51–71

  • Al-Sabahi E, Rahim SA, Wan Zahairi WY, Nozaily AI, Alshaebi F (2009) The characteristics of leachate and groundwater pollution at municipal solid waste landfill of Ibb City, Yemen. Am J Environ Sci 5(3):256–266

    Article  Google Scholar 

  • Anbazhagan S, Balamurugan G, Biswal TK (2011) Remote sensing in delineating deep fracture aquifer zones. In: Anbazhagan S, Subramanian SK, Yang X (eds) Geoinformatics in APPLIED GEOMORPHOLOGY. CRC Press, Taylor and Francis, pp 205–229

    Chapter  Google Scholar 

  • Awasthi A, Chauhan SS (2011) Using AHP and Dempster-Shafer theory for evaluating sustainable transport solutions. Environ Model Software 26:787–796. https://doi.org/10.1016/j.envsoft.2010.11.010

    Article  Google Scholar 

  • Balamurugan G, Anbazhagan S, Biswal TK (2008) Remote sensing for delineating deep aquifer zones, Hosur-Rayakottai region, India. In: 2008 (ed), National Symposium on Advances in remote sensing technology and applications with Specia lEmphasis on microwave remote sensing and annual convention of Indian Society of Remote Sensing (ISRS), Ahmedabad

  • Bayode S, Ojo JS, Olorunfemi MO (2006) Geoelectric characterization of aquifer types in the basement complex terrain of parts of osun state. Nigeria Global J Pure Appl Sci 12(3):377–385

    Google Scholar 

  • Bhattacharya PK, Patra HP (1968) Direct current geoelectric sounding methods in geochemistry and geophysics. Elsevier, Amsterdam, p 135

    Google Scholar 

  • Braga ACO, Dourado JC, Malagutti FW (2006) Resistivity (DC) method applied to aquifer protection studies. Braz J Geophys 24(4):573–581

    Article  Google Scholar 

  • Brans JP (1982) L’ingénièrie de la décision; Elaboration d’instruments d’aide à la décision. La méthode PROMETHEE. In: Nadeau R, Landry M (eds) L’aide à la décision: Nature, Instruments et Perspectives d’Avenir. Presses de l’Université Laval, Québec, Canada, pp 183–213

  • Butwall M, Ranka P, Shah S (2019) Python in field of data science: a review. Int J Comput Appl 178(49):20–24. https://doi.org/10.5120/ijca2019919404

    Article  Google Scholar 

  • Chachadi AG, Gavas PD (2012) Correlation study between Geoelectric and aquifer parameters in west coast laterites. 5(2):282–287

  • Chowdhury A, Jha MK, Chowdary VM, Mal BC (2009) Integrated remote sensing and GIS-based approach for assessing groundwater potential in West Medinipur district, West Bengal India. Int J Remote Sens 30(1):231–250

    Article  Google Scholar 

  • Dada SS (2006) Proterozoic evolution of Nigeria. In: Oshin O (ed) The basement complex of Nigeria and its mineral resources (a tribute to Prof. M.A.O. Rahaman). Akin Jinad and Company, Ibadan, pp 29–44

    Google Scholar 

  • Diakoulaki D, Karangelis F (2007) Multi-criteria decision analysis and cost-benefit analysis of alternative scenarios for the power generation sector in Greece. Renew Sustain Energy Rev 11:716–727

    Article  Google Scholar 

  • Ekwe AC, Onu NN, Onuoha KM (2010) Estimation of aquifer hydraulic characteristics from electrical sounding data: the case of middle Imo River basin aquifers, south-eastern Nigeria. J Spatial Hydrol 6:121–132

    Google Scholar 

  • Elevli B, Demirci A (2004) Multicriteria choice of ore transport system for an underground mine: application of PROMETHEE methods. J S Afr Inst Min Metall 104(5):251–256

    Google Scholar 

  • Fashae OA, Tijani MN, Talabi AO, Adedeji OI (2014) Delineation of groundwater potential zones in the crystalline basement terrain of SW-Nigeria: an integrated GIS and remote sensing approach. Appl Water Sci 4:19–38. https://doi.org/10.1007/s13201-013-01279

    Article  Google Scholar 

  • Frost BR, Frost CD (2008) On charnokites. Gondwana Res 13: 30–44. Available online at www.sciencedirect.com

  • Gebre SL, Cattrysse D, Orshoven JV (2021) Multi-criteria decision-making methods to address water allocation problems: a systematic review. Water 2021(13):125. https://doi.org/10.3390/w13020125

    Article  Google Scholar 

  • Ibuot JO, Omeje ET, Obiora DN (2021) Geophysical evaluation of geohydrokinetic properties of aquifer units in parts of Enugu state, Nigeria. Water Practice Technol. https://doi.org/10.2166/wpt.2021.074

    Article  Google Scholar 

  • Ige OO, Obasaju DO, Baiyegunhi C, Ogunsanwo O, Baiyegunhi TL (2018) Evaluation of aquifer hydraulic characteristics using geoelectrical sounding, pumping and laboratory tests: a case study of Lokoja and Patti Formation, Southern Bida Basin, Nigeria. Open Geosci 2018(10):807–820

    Article  Google Scholar 

  • Iserhien-Emekeme R, Ofomola MO (2020) Evaluation of the protection and hydraulic characteristics of the aquifer formation using second order geoelectric indices and pumping test in Aghalokpe, Nigeria. Sci Afr 19(2):2020

    Google Scholar 

  • Jha MK, Chowdary VM, Chowdhury A (2010) Groundwater assessment in Salboni Block, West Bengal (India) using remote sensing, geographical information system and multi-criteria decision analysis techniques. Hydrogeol J 18:1713–1728

    Article  Google Scholar 

  • Kao JJ, Lin HY (1996) Multifactor spatial analysis for landfill siting. J Environ Eng 122:902–908. https://doi.org/10.1061/(ASCE)0733-9372(1996)122:10(902)

  • Keller GV, Frishchnecht FC (1996) Electrical methods in geophysical prospecting. Pergamon Press, New York

    Google Scholar 

  • Kellgren N (2002) Applicability of remote sensing techniques to groundwater exploration in semi-arid hard rock terrain—a systematic approach. PhD thesis, Chalmers Publication Library-Chalmers University of Technology, Go¨tebor

  • Kokot S, Phuong TD (1999) Elemental content of Vietnamese rice. Part 2. Multivariate data analysis. Analyst 124(4):561–569

    Article  Google Scholar 

  • Kumar T, Gautam AK, Kumar T (2014) Appraising the accuracy of GIS-based multi-criteria decision making technique for delineation of groundwater potential zones. Water Resour Manag 28:4449–4466. https://doi.org/10.1007/s11269-014-0663-6

    Article  Google Scholar 

  • Lee S, Kim YS, Oh HJ (2012) Application of a weights-of-evidence method and GIS to regional groundwater productivity potential mapping. J Environ Manag 96(1):91–105

    Article  Google Scholar 

  • Lee S, Hong S-M, Jung H-S (2018) GIS-based groundwater potential mapping using artificial neural network and support vector machine models: the case of Boryeong city in Korea. Geocarto Int 33(8):847–861. https://doi.org/10.1080/10106049.2017.1303091

    Article  Google Scholar 

  • Loke MH (1999) Electrical imaging surveys for environmental and engineering studies: a practical guide to 2D and 3D surveys, pp 8–10

  • Metwaly M, El-Qady G, Massoud U, El-Kenawy A, Matsushima J, Al-Arifi N (2009) Integrated geoelectrical survey for groundwater and shallow subsurface evaluation: case study at Siliyin spring, El-Fayoum, Egypt. Int J Earth Sci 99:1427–1436

    Article  Google Scholar 

  • Mogaji KA, Lim HS (2016) Groundwater potentiality mapping using geoelectrical-based aquifer hydraulic parameters: GIS-based multi-criteria decision analysis modeling approach. Terr Atmos Ocean Sci. https://doi.org/10.3316/TAO.2016.11.01.02

  • Mogaji KA, Lim HS (2017) Development of groundwater favourability map using GIS-based driven data mining models: an approach for effective groundwater resource management. Geocarto Int. https://doi.org/10.1080/10106049.2016.1273400

    Article  Google Scholar 

  • Mogaji KA, Omobude OB (2017) Modeling of geoelectric parameters for assessing groundwater potentiality in a multifaceted geologic terrain, Ipinsa Southwest, Nigeria - A GIS-based GODT approach. J Astron Geophys 6:434–451

  • Mogaji KA, Olayanju GM, Oladapo MI (2011) Geophysical evaluation of rock type impact on aquifer characterization, geo electric assessment and GIS approach in the basement complex of ondo state, southern western Nigeria. Int J Water Resour Environ Eng 3(4):77–86

    Google Scholar 

  • Mogaji KA, Lim HS, Abdullah K (2015) Modeling of groundwater recharge using a multiple linear regression (MLR) recharge model developed from geophysical parameters: a case of groundwater resources management. Environ Earth Sci 73(3):1217–1230. https://doi.org/10.1007/s12665-014-3476-2

  • Mogaji KA, Gbode IE, Olayanju OA (2021) Modeling of aquifer potentiality using GIS-based knowledge-driven technique: a case study of hard rock geological setting, southwestern Nigeria. Sustain Water Resour Manag 7:64. https://doi.org/10.1007/s40899-021-00538-4

    Article  Google Scholar 

  • Mohammed MZ, Ogunribido THT, Funmilayo AT (2012) Electrical resistivity sounding for subsurface delineation and evaluation of groundwater potential of Araromi Akungba-Akoko Ondo State Southwestern Nigeria. J Environ Earth Sci 2(7):29–40

  • Nampak H, Pradhan B, Manap MA (2014) Application of GIS based data driven evidential belief function model to predict groundwater potential zonation. J Hydrol 513:283–300

  • Nasiri H, Boloorani AD, Sabokbar HAF, Jafari HR, Hamzeh M, Rafii Y (2012) Determining the most suitable areas for artificial groundwater recharge via an integrated PROMETHEE II-AHP method in GIS environment (case study: Garabaygan Basin, Iran). Environ Monit Assess. https://doi.org/10.1007/s10661-012-2586-0

    Article  Google Scholar 

  • Ndlovu S, Mpofu V, Manatsa D, Muchuweni E (2010) Mapping groundwater aquifers using dowsing, slingram electromagnetic survey method and vertical electrical sounding jointly in the granite rock formation: a case of Matshetshe rural area in Zimbabwe. J Sustain Develop Afr 12(5):199–208

    Google Scholar 

  • Olabode OF (2019) Potential groundwater recharge sites mapping in a typical basement terrain: a GIS methodology approach. J Geovis Spatial Anal. https://doi.org/10.1007/s41651-019-0028-z

    Article  Google Scholar 

  • Olaseeni O, Fagbemigun T, Ojo B, Amosun J, Oyebamiji A (2021) Geophysical assessment of groundwater vulnerability to diesel contamination at a telecommunication mast in Adebayo area, Ado Ekiti, Southwestern Nigeria. Ann Sci Technol-B 6(1):1–8

    Article  Google Scholar 

  • Olayinka AI (1996) Non uniquencess in the interpretation of bedrock resistivity from sounding curves and its hydrological implications. Water Resour 7(1&2):55–60

    Google Scholar 

  • Olorunfemi MO, Fasuyi SA (1993) Aquifer types and the geo-electric/hydrogeologic characteristics of part of the central basement terrain of Nigeria (Niger state). J Afr Earth Sci 16(3):309–317

    Article  Google Scholar 

  • Omosuyi GO, Ojo JS, Enikanselu PA (2003) Geophysical investigation for groundwater around Obanla-obakekere in Akure within the basement complex of southwest Nigeria. J Min Geol 39(2):109–116

    Google Scholar 

  • Omosuyi GO, Adegoke AO, Adelusi AO (2008) Interpretation of electromagnetic and geoelectric sounding data for groundwater resources around Obanla-obakekere, near Akure, Southwestern Nigeria. Pac J Sci Technol 9(2):509–525

    Google Scholar 

  • Omotola OO, Oladapo MI, Akintorinwa OJ (2020) Modeling assessment of groundwater vulnerability to contamination risk in a typical basement terrain case of vulnerability techniques application comparison study. Model Earth Syst Environ. https://doi.org/10.1007/s40808-020-00720-1

  • Opricovic S, Tzeng GH (2007) Extended VIKOR method in comparison with outranking methods. Eur J Oper Res 178:514–529

    Article  Google Scholar 

  • Orellana E, Mooney HM (1966) Master tables and curves for vertical electrical sounding over layered structures. Interciencia, Madrid

    Google Scholar 

  • Ouedraogo I, Defourny P, Vanclooster M (2016) Mapping the groundwater vulnerability for pollution at the pan African scale. Sci Total Environ 544:939–953

  • Pradhan B (2009) Groundwater potential zonation for basaltic watersheds using satellite remote sensing data and GIS techniques. Cent Eur J Geosci 1(1):120–129

    Google Scholar 

  • Queiruga D, Walther G, Gonza’lez-Benito J, Spengler T (2008) Evaluation of sites for the location of WEEE recycling plants in Spain. Waste Manag 28(1):181–190

    Article  Google Scholar 

  • Roodposhti MS, Rahimi S, Beglou MJ (2012) PROMETHEE II and fuzzy AHP: an enhanced GIS-based landslide susceptibility mapping. Nat Hazards. https://doi.org/10.1007/s11069-012-0523-8

    Article  Google Scholar 

  • Saaty TL (1980) The analytic hierarchy process; planning, priority setting, resource allocation. McGraw-Hill, New York

    Google Scholar 

  • Saaty TL, Vargas GL (1991) Prediction, projection and forecasting. Kluwer Academy Publishers, Dordrecht

    Book  Google Scholar 

  • Saidi S, Hosni S, Mannai H, Jelassi F, Bouri S, Anselme B, (2017) GIS-based multi-criteria analysis and vulnerability method for the potential groundwater recharge delineation, case study of Manouba phreatic aquifer, NE Tunisia

  • Solomon S, Quiel F (2006) Groundwater study using remote sensing and geographic information systems (GIS) in the central highlands of Eritrea. Hydrogeol J 14(5):1029–1041

    Article  Google Scholar 

  • Soupios PM, Kouli M, Vallianatos F, Vafidis A, Stavroulakis G (2007) Estimation of aquifer hydraulic parameters from surficial geophysical methods: a case study of Keritis Basin in Chania (Crete–Greece). J Hydrol 338:122–131. https://doi.org/10.1016/j.jhydrol.2007.02.028

    Article  Google Scholar 

  • Srivastava PK, Bhattacharya AK (2006) Groundwater assessment through an integrated approach using remote sensing, GIS and resistivity techniques: a case study from a hard rock terrain. Int J Remote Sens 27:4599–4620. https://doi.org/10.1080/01431160600554983

    Article  Google Scholar 

  • Tizro AT, Singhal DC (2010) Geoelectrical studies in Narnaul area for estimating transmissivity in alluvial aquifers. National Seminar on Hydrological Hazards, University of Roorkee, India

    Google Scholar 

  • Todd KD (1980) Groundwater hydrology, 2nd edn. Wiley, New York, p 535

    Google Scholar 

  • Todd KD, Mays LW (2005) Groundwater hydrology, 3rd edn. Wiley, New York, p 636

    Google Scholar 

  • Umar ND, Idris IG, Abdullahi AI (2018) Hydrogeophysical investigation of the aquifers of brine field of awe and environs, Central Benue Trough, Nigeria. Int J Sci Eng Res 9(3). ISSN 2229-5518

  • Vander-Velper BPA (2004) WinRESIST Version 1.0 Resistivity Depth Sounding Interpretation Software M.Sc. Research Project. ITC, Delft Netherland

  • Vincke JP, Brans P (1985) A preference ranking organization method. The PROMETHEE method for MCDM. Manag Sci 31:641–656

    Google Scholar 

  • Widianta MMD, Rizaldi T, Setyohadi DPS, Riskiawan HY (2018) Comparison of multi-criteria decision support methods (AHP, TOPSIS, SAW & PROMENTHEE) for employee placement. J Phys Conf Ser 953:012116

    Article  Google Scholar 

  • Zhou Q, Su J, Arnberg-Nielsen K, Ren Y, Luo J, Ye Z, Feng J (2021) A GIS-based hydrological modeling approach for rapid urban flood hazard assessment. Water 13(11):1483. https://doi.org/10.3390/w13111483

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Mogaji.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mogaji, K.A., Atenidegbe, O.F., Adeyemo, I.A. et al. Application of GIS-based PROMETHEE data mining technique to geoelectrical-derived parameters for aquifer potentiality assessment in a typical hardrock terrain Southwestern Nigeria. Sustain. Water Resour. Manag. 8, 51 (2022). https://doi.org/10.1007/s40899-022-00616-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40899-022-00616-1

Keywords

Navigation