Skip to main content
Log in

Evaluation of Soil–Geometrically Modified Geogrid Interaction in Direct Shear Mode

  • Original Paper
  • Published:
International Journal of Geosynthetics and Ground Engineering Aims and scope Submit manuscript

Abstract

Geogrids are widely used for soil reinforcement, justifying the necessity to comprehend their interaction with soil for safe and economic design of reinforced soil structures. As contribution of transverse rib resistance to soil–geogrid interaction in direct shear mode is very low, current research has been conducted to evaluate possible impact of modifying transverse member thickness (height) on interactions. Modified geogrids with three different transverse rib thicknesses perpendicular to load direction and different aperture sizes were generated by 3D printing technology and interactions at soil–geogrid interface investigated using large-scale direct shear apparatus. Poorly graded sand and normal pressures of 25, 50 and 75 kPa have been utilized in the investigation. Test results show maximum 22% improvement in overall shear strength at interface through greater transverse rib resistance mobilization using the modified geogrid with the thickest ribs (i.e. 6 mm). Enhancements showed to be directly related to the increase in rib thickness and inversely associated to aperture size. The highest and the lowest improvements in shear strengths at interface were correspondingly achieved by samples reinforced with 10 × 10 × 6 mm (length × width × rib thickness) and 40 × 40 × 2 mm geogrids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

Some or all data, models or code that support the findings of the current study are available from the corresponding author upon reasonable request.

References

  1. Lopes ML (2002) Soil–geosynthetic interaction. In: Shukla SK (ed) geosynthetics and their applications. Telford Publishing, Thomas Telford Ltd, London

    Google Scholar 

  2. Abdi MR, Sadrnejad A, Arjomand MA (2009) Strength enhancement of clay by encapsulating geogrids in thin layers of sand. Geotext Geomembr 27(6):447–455. https://doi.org/10.1016/j.geotexmem.2009.06.001

    Article  Google Scholar 

  3. Moraci N, Gioffrè D (2006) A simple method to evaluate the pullout resistance of extruded geogrids embedded in a compacted granular soil. Geotext Geomembr 24(2):116–128. https://doi.org/10.1016/j.geotexmem.2005.11.001

    Article  Google Scholar 

  4. Hsieh CW, Chen GH, Wu JH (2011) The shear behaviour obtained from the direct shear and pullout tests for different poor graded soil–geosynthetic systems. J Geoeng 6(1):15–26

    Google Scholar 

  5. Abdi MR, Arjomand MA (2011) Pullout tests conducted on clay reinforced with geogrid encapsulated in thin layers of sand. Geotext Geomembr 29(6):588–595. https://doi.org/10.1016/j.geotexmem.2011.04.004

    Article  Google Scholar 

  6. Abdi MR, Zandieh AR (2014) Experimental and numerical analysis of large scale pull out tests conducted on clays reinforced with geogrids encapsulated with coarse material. Geotext Geomembr 42(5):494–504. https://doi.org/10.1016/j.geotex.2014.0mem7.008

    Article  Google Scholar 

  7. Chen C, McDowell GR, Thom NH (2014) Investigating geogrid-reinforced ballast: experimental pull-out tests and discrete element modelling. Soils Found 54(1):1–11. https://doi.org/10.1016/j.sandf.2013.12.001

    Article  Google Scholar 

  8. Ferreira FB, Vieira CS, Lopes ML, Carlos DM (2016) Experimental investigation on the pullout behaviour of geosynthetics embedded in a granite residual soil. Eur J Environ Civ Eng 20(9):1147–1180. https://doi.org/10.1080/19648189.2015.1090927

    Article  Google Scholar 

  9. Abdi MR, Mirzaeifar H (2017) Experimental and PIV evaluation of grain size and distribution on soil–geogrid interactions in pullout test. Soils Found 57(6):1045–1058. https://doi.org/10.1016/j.sandf.2017.08.030

    Article  Google Scholar 

  10. Mosallanezhad M, Sadat Taghavi SH, KhadivSarvestani M (2017) Large-scale pullout testing of a new ‘rooted’ geogrid. Int J Phys Model Geotech 17(3):195–203. https://doi.org/10.1680/jphmg.15.00029

    Article  Google Scholar 

  11. Bathurst RJ, Ezzein FM (2015) Geogrid and soil displacement observations during pullout using a transparent granular soil. Geotech Test J 38(5):673–685. https://doi.org/10.1520/GTJ20140145

    Article  Google Scholar 

  12. Altay G, Kayadelen C, Taşkıran T, Kaya YZ (2019) A laboratory study on pull-out resistance of geogrid in clay soil. Measurement 139:301–307. https://doi.org/10.1016/j.measurement.2019.02.065

    Article  Google Scholar 

  13. Abdi MR, Zandieh AR, Mirzaeifar H, Arjomand MA (2019) Influence of geogrid type and coarse grain size on pull out behaviour of clays reinforced with geogrids embedded in thin granular layers. Eur J Environ Civ Eng 25(12):2161–2180. https://doi.org/10.1080/19648189.2019.1619627

    Article  Google Scholar 

  14. Vieira CS, Pereira P, Ferreira F, Lopes MDL (2020) Pullout behaviour of geogrids embedded in a recycled construction and demolition material. Effects of specimen size and displacement rate. Sustainability 12(9):3825. https://doi.org/10.3390/su12093825

    Article  Google Scholar 

  15. Namjoo AM, Soltani F, Toufigh V (2021) Effects of moisture on the mechanical behavior of sand–geogrid: an experimental investigation. Int J Geosynth Ground Eng 7(1):1–13. https://doi.org/10.1007/s40891-020-00243-w

    Article  Google Scholar 

  16. Derksen J, Ziegler M, Fuentes R (2021) Geogrid-soil interaction: a new conceptual model and testing apparatus. Geotext Geomembr 49(5):1393–1406. https://doi.org/10.1016/j.geotexmem.2021.05.011

    Article  Google Scholar 

  17. Beyranvand A, Lajevardi SH, Ghazavi M, Mirhosseini SM (2021) Laboratory investigation of pullout behavior of strengthened geogrid with concrete pieces in fine sand. Innov Infrastruct Solut 6(4):1–11. https://doi.org/10.1007/s41062-021-00575-0

    Article  Google Scholar 

  18. Chang JY, Feng SJ (2021) Experimental study of the shear behaviour of a multilayer geosynthetic liner system. Geosynth Int 28(6):634–646. https://doi.org/10.1680/jgein.21.00020

    Article  Google Scholar 

  19. Chen JF, Gu ZA, Rajesh S, Yu SB (2021) Pullout Behaviour of triaxial geogrid embedded in a transparent soil. Int J Geomech 21(3):04021003. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001936

    Article  Google Scholar 

  20. Abdi MR, Mirzaeifar H, Asgardun Y (2022) Novel soil-pegged geogrid (PG) interactions in pull-out loading conditions. Geotext Geomembr 50:764–788. https://doi.org/10.1016/j.geotexmem.2022.04.001

    Article  Google Scholar 

  21. Mirzaeifar H, Hatami K, Abdi MR (2022) Pullout testing and Particle Image Velocimetry (PIV) analysis of geogrid reinforcement embedded in granular drainage layers. Geotext Geomembr. https://doi.org/10.1016/j.geotexmem.2022.06.008

    Article  Google Scholar 

  22. Lee KM, Manjunath VR (2000) Soil–geotextile interface friction by direct shear tests. Can Geotech J 37(1):238–252. https://doi.org/10.1139/t99-124

    Article  Google Scholar 

  23. Goodhue MJ, Edil TB, Benson CH (2001) Interaction of foundry sands with geosynthetics. J Geotech Geoenviron Eng 127(4):353–362. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:4(353)

    Article  Google Scholar 

  24. Mofiz SA, Taha MR, Sharker DC (2004) Mechanical stress-strain characteristics and model behavior of geosynthetic reinforced soil composites. In: 17th ASCE engineering mechanics conference, pp 23–31

  25. Abu-Farsakh M, Coronel J, Tao M (2007) Effect of soil moisture content and dry density on cohesive soil–geosynthetic interactions using large direct shear tests. J Mater Civ Eng 19(7):540–549. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:7(540)

    Article  Google Scholar 

  26. Liu CN, Zornberg JG, Chen TC, Ho YH, Lin BH (2009) Behaviour of geogrid-sand interface in direct shear mode. J Geotech Geoenviron Eng 135(12):1863. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000150

    Article  Google Scholar 

  27. Basudhar PK (2010) Modeling of soil–woven geotextile interface behavior from direct shear test results. Geotext Geomembr 28(4):403–408. https://doi.org/10.1016/j.geotexmem.2009.12.005

    Article  Google Scholar 

  28. Tuna SC, Altun S (2012) Mechanical behaviour of sand-geotextile interface. Sci Iran 19(4):1044–1051. https://doi.org/10.1016/j.scient.2012.06.009

    Article  Google Scholar 

  29. Liu CN, Yang KH, Nguyen MD (2014) Behaviour of geogrid–reinforced sand and effect of reinforcement anchorage in large-scale plane strain compression. Geotext Geomembr 42(5):479–493. https://doi.org/10.1016/j.geotexmem.2014.07.007

    Article  Google Scholar 

  30. Kim D, Ha S (2014) Effects of particle size on the shear behaviour of coarse grained soils reinforced with geogrid. Materials 7(2):963–979. https://doi.org/10.3390/ma7020963

    Article  Google Scholar 

  31. Ferreira FB, Vieira CS, Lopes M (2015) Direct shear behaviour of residual soil–geosynthetic interfaces–influence of soil moisture content, soil density and geosynthetic type. Geosynth Int 22(3):257–272. https://doi.org/10.1680/gein.15.00011

    Article  Google Scholar 

  32. Mosallanezhad M, Alfaro MC, Hataf N, Taghavi SS (2016) Performance of the new reinforcement system in the increase of shear strength of typical geogrid interface with soil. Geotext Geomembr 44(3):457–462. https://doi.org/10.1016/j.geotexmem.2015.07.005

    Article  Google Scholar 

  33. Han B, Ling J, Shu X, Gong H, Huang B (2018) Laboratory investigation of particle size effects on the shear behaviour of aggregate-geogrid interface. Constr Build Mater 158:1015–1025. https://doi.org/10.1016/j.conbuildmat.2017.10.045

    Article  Google Scholar 

  34. Sweta K, Hussaini SKK (2018) Effect of shearing rate on the behaviour of geogrid-reinforced railroad ballast under direct shear conditions. Geotext Geomembr 46(3):251–256. https://doi.org/10.1016/j.geotexmem.2017.12.001

    Article  Google Scholar 

  35. Abdi MR, SafdariSehGonbad M (2019) Studying the effect of roughness on soil–geotextile interaction in direct shear test. J Eng Geo 12(5):1–30

    Google Scholar 

  36. Makkar FM, Chandrakaran S, Sankar N (2019) Experimental investigation of response of different granular soil–3D geogrid interfaces using large-scale direct shear tests. J Mater Civ Eng 31(4):04019012. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002645

    Article  Google Scholar 

  37. Stacho J, Sulovska M, Slavik I (2020) Determining the shear strength properties of a soil–geogrid interface using a large-scale direct shear test apparatus. Period Polytech Civ Eng 64(4):989–998. https://doi.org/10.3311/PPci.15766

    Article  Google Scholar 

  38. Liu FY, Ying MJ, Yuan GH, Wang J, Gao ZY, Ni JF (2021) Particle shape effects on the cyclic shear behaviour of the soil–geogrid interface. Geotext Geomembr 49(4):991–1003. https://doi.org/10.1016/j.geotexmem.2021.01.008

    Article  Google Scholar 

  39. Wang J, Liu FY, Zheng QT, Cai YQ, Gou CF (2021) Effect of aperture ratio on the cyclic shear behaviour of aggregate–geogrid interfaces. Geosynth Int 28(2):158–173. https://doi.org/10.1680/jgein.20.00

    Article  Google Scholar 

  40. Jewell RA, Millilgan GWE, Sarsby RW, Dubois D (1984) Interactions between soil and geogrids. In: Proceedings of the symposium of polymer grid reinforcement. Thomas Telford Limited, London, pp 19–29

  41. Horpibulsuk S, Niramitkornburee A (2010) Pullout resistance of bearing reinforcement embedded in sand. Soils Found 50(2):215–226. https://doi.org/10.3208/sandf.50.215

    Article  Google Scholar 

  42. Sadat Taghavi SH, Mosallanezhad M (2017) Experimental analysis of large-scale pullout tests conducted on polyester anchored geogrid reinforcement systems. Can Geotech J 54(5):621–630. https://doi.org/10.1139/cgj-2016-0365

    Article  Google Scholar 

  43. Abdi MR, SafdariSehGonbad M (2018) Enhancement of soil–geogrid interactions in direct shear mode using attached elements as anchors. Eur J Environ Civ Eng 24(8):1161–1179. https://doi.org/10.1080/19648189.2018.1454861

    Article  Google Scholar 

  44. Abdi MR, Pour RamezanChafjiri MPR (2022) Appraisal of anchor arrangement and size On sand-geogrid interaction in direct shear. Geotech Geol Eng. https://doi.org/10.21203/rs.3.rs-1104294/v1

    Article  Google Scholar 

  45. Abdi MR, Hossienabadi A (2022) Optimizing micro-anchor attachment angle for maximum interaction at soil–geogrid interface in direct shear. Int J Geomech (in press)

  46. ASTM D422 (2007) Standard test method for particle-size analysis of soils. ASTM International, West Conshohocken

    Google Scholar 

  47. ASTM D4253 (2016) Standard test methods for maximum index density and unit weight of soils using a vibratory table. ASTM International, West Conshohocken

    Google Scholar 

  48. ASTM D4254 (2016) Standard test methods for minimum index density and unit weight of soils and calculation of relative density. ASTM International, West Conshohocken

    Google Scholar 

  49. ASTM D2487 (2011) Standard practice for classification of soils for engineering purposes (unified soil classification system). ASTM International, West Conshohocken

    Google Scholar 

  50. ASTM D3080 (2004) Standard test method for direct shear test of soils under consolidated drained conditions. ASTM International, West Conshohocken

    Google Scholar 

  51. ASTM D5321 (2008) Standard test method for determining the coefficient of soil and geosynthetic or geosynthetic and geosynthetic friction by the direct shear method. ASTM International, West Conshohocken

    Google Scholar 

  52. Alfaro MC, Pathak YP (2005) Dilatant stresses at the interface of granular fills and geogrid strip reinforcements. Geosynth Int 12(5):239–252. https://doi.org/10.1680/gein.2005.12.5.239

    Article  Google Scholar 

  53. Alfaro MC, Hayashi S, Miura N, Watanabe K (1995) Pullout interaction mechanism of geogrid strip reinforcement. Geosynth Int 2(4):679–698. https://doi.org/10.1680/gein.2.0030

    Article  Google Scholar 

  54. Tatlisoz N, Edil TB, Benson CH (1998) Interaction between reinforcing geosynthetics and soil–tire chip mixtures. J Geotech Geoenviron Eng 124(11):1109–1119. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:11(1109)

    Article  Google Scholar 

  55. Bergado DT, Chai JC, Abiera HO, Alfaro MC, Balasubramaniam AS (1993) Interaction between cohesive-frictional soil and various grid reinforcements. Geotext Geomembr 12(4):327–349. https://doi.org/10.1016/0266-1144(93)90008-C

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmood Reza Abdi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdi, M.R., Tabarsa, A. & Haghgouy, P. Evaluation of Soil–Geometrically Modified Geogrid Interaction in Direct Shear Mode. Int. J. of Geosynth. and Ground Eng. 9, 60 (2023). https://doi.org/10.1007/s40891-023-00479-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40891-023-00479-2

Keywords

Navigation