Skip to main content
Log in

Influence of Rock Powder on the Geotechnical Behaviour of Expansive Soil

  • Original Paper
  • Published:
International Journal of Geosynthetics and Ground Engineering Aims and scope Submit manuscript

Abstract

Expansive soils create challenges in civil engineering projects due to their tendency to significant volume changes with variation in moisture content. In this study, an experimental study was carried out to evaluate the influences of rock powder on the geotechnical properties of expansive soil. This paper presents the results of some index and engineering properties of expansive soil mixed with the rock powder, including Atterberg limits, compaction, free swelling, unconfined compressive strength (UCS), California bearing ratio (CBR), direct shear, and permeability at different percentages (0%, 8%, 16%, 24%, 32, and 40% by dry soil weight). The results reveal that the index properties, optimum moisture content, free swelling, cohesion, and coefficient of permeability decrease with the addition of rock powder up to 40%. Whereas, the maximum dry density, UCS, and CBR increase up to 24% of rock powder thereafter reversed. Furthermore, the internal friction angle increases by 95.32%, while the subbase thickness layer for a roadway could be reduced by 40% with the addition of 40% rock powder to the soil samples. Based on the test results, the optimum ratio of rock powder for the improvement of expansive soil is about 24%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Khadka SD, Jayawickrama PW, Senadheera S, Segvic B (2020) Stabilisation of highly expansive soils containing sulfate using metakaolin and fly ash based geopolymer modified with lime and gypsum. Transp Geotech 23:100327. https://doi.org/10.1016/j.trgeo.2020.100327

    Article  Google Scholar 

  2. Al-Taie A, Disfani MM, Evans R, Arulrajah A, Horpibulsuk S (2016) Swell–shrink cycles of lime stabilized expansive subgrade. Proced Eng 143:615–622. https://doi.org/10.1016/j.proeng.2016.06.083

    Article  Google Scholar 

  3. Sabat AK, Mohanta S (2016) Performance of limestone dust stabilised expansive soil-fly ash mixes as a construction material. Int J Civ Eng Technol (IJCIET) 7(6):482

    Google Scholar 

  4. Liu Y, Chang C-W, Namdar A, She Y, Lin C-H, Yuan X, Yang Q (2019) Stabilisation of expansive soil using cementing material from rice husk ash and calcium carbide residue. Constr Build Mater 221:1–11. https://doi.org/10.1016/j.conbuildmat.2019.05.157

    Article  Google Scholar 

  5. Ene E, Okagbue C (2009) Some basic geotechnical properties of expansive soil modified using pyroclastic dust. Eng Geol 107(1):61–65. https://doi.org/10.1016/j.enggeo.2009.03.007

    Article  Google Scholar 

  6. Edral C (1999) Effect of fly ash on swelling pressure of expansive soil. J Geotech Eng 4:764

    Google Scholar 

  7. Das BM (2015) Principles of foundation engineering. Cengage Learning, Boston

    Google Scholar 

  8. Wang D, Abriak NE, Zentar R, Chen W (2013) Effect of lime treatment on geotechnical properties of Dunkirk sediments in France. Road Mater Pavement Des 14(3):485–503

    Article  Google Scholar 

  9. Daraei A, Sherwani AFH, Faraj RH, Mohammad S, Kurdo S, Zare S, Mahmoodzadeh A (2019) Stabilisation of problematic soil by utilising cementitious materials. Innov Infrastruct Solut 4(1):33

    Article  Google Scholar 

  10. Al-Rawas AA, Hago A, Al-Sarmi H (2005) Effect of lime, cement and Sarooj (artificial Pozzolan) on the swelling potential of an expansive soil from Oman. Build Environ 40(5):681–687

    Article  Google Scholar 

  11. Phani Kumar B, Sharma RS (2004) Effect of fly ash on engineering properties of expansive soils. J Geotech Geoenviron Eng 130(7):764–767

    Article  Google Scholar 

  12. Sabat AK, Muni PK (2015) Effects of limestone dust on geotechnical properties of an expansive soil. Int J Appl Eng Res 10:37724–37730

    Google Scholar 

  13. Parihar NS, Garlapati VK, Ganguly R (2018) Stabilisation of black cotton soil using waste glass. Handbook of environmental materials management. Springer, Cham, pp 1–16

    Google Scholar 

  14. Kalkan E (2011) Impact of wetting–drying cycles on swelling behavior of clayey soils modified by silica fume. Appl Clay Sci 52(4):345–352

    Article  Google Scholar 

  15. Chetia M, Sridharan A (2016) A review on the influence of rock quarry dust on geotechnical properties of soil. Geo-Chicago 2016:179–190

    Google Scholar 

  16. Zhang Y, Korkiala-Tanttu LK, Borén M (2019) Assessment for sustainable use of quarry fines as pavement construction materials: part II-stabilization and characterization of quarry fine materials. Materials 12(15):2450

    Article  Google Scholar 

  17. Dang LC, Fatahi B, Khabbaz H (2016) Behaviour of expansive soils stabilised with hydrated lime and bagasse fibres. Proced Eng 143:658–665. https://doi.org/10.1016/j.proeng.2016.06.093

    Article  Google Scholar 

  18. Al-Joulani N (2012) Effect of stone powder and lime on strength compaction and CBR properties of fine soils. Jordan J Civ Eng 159(697):1–16

    Google Scholar 

  19. Peter L, Jayasree PK, Balan K, Raj SA (2016) Laboratory investigation in the improvement of subgrade characteristics of expansive soil stabilised with coir waste. Transp Res Proced 17:558–566. https://doi.org/10.1016/j.trpro.2016.11.110

    Article  Google Scholar 

  20. Akbulut S, Arasan S, Kalkan E (2007) Modification of clayey soils using scrap tire rubber and synthetic fibers. Appl Clay Sci 38(1–2):23–32

    Article  Google Scholar 

  21. Agarwal N (2015) Effect of stone dust on some geotechnical properties of soil. IOSR J Mech Civ Eng IOSR-JMCE 12(1):61–64

    Google Scholar 

  22. Peethamparan S, Olek J, Lovell J (2008) Influence of chemical and physical characteristics of cement kiln dusts (CKDs) on their hydration behavior and potential suitability for soil stabilisation. Cem Concrete Res 38(6):803–815

    Article  Google Scholar 

  23. Cabalar AF, Karabash Z, Mustafa WS (2014) Stabilising a clay using tyre buffings and lime. Road Mater pavement Des 15(4):872–891

    Article  Google Scholar 

  24. Blayi RA, Sherwani AFH, Ibrahim HH, Abdullah SJ (2020) Stabilization of high-plasticity silt using waste brick powder. SN Appl Sci. https://doi.org/10.1007/s42452-020-03814-8

    Article  Google Scholar 

  25. Sabat AK (2012) Stabilisation of expansive soil using waste ceramic dust. Electron J Geotech Eng 17(Z):3915–3926

  26. Igwe O, Adepehin EJ (2017) Alternative approach to clay stabilization using granite and dolerite dusts. Geotech Geol Eng 35(4):1657–1664

    Article  Google Scholar 

  27. Cabalar AF, Ismael IA, Yavuz A (2020) Use of zinc coated steel CNC milling waste for road pavement subgrade. Transp Geotech. https://doi.org/10.1016/j.trgeo.2020.100342

  28. Roberts FL, Kandhal PS, Brown ER, Lee D-Y, Kennedy TW (1991) Hot mix asphalt materials, mixture design and construction. NAPA Education Foundation, Lanham

  29. Horpibulsuk S, Phetchuay C, Chinkulkijniwat A, Cholaphatsorn A (2013) Strength development in silty clay stabilised with calcium carbide residue and fly ash. Soils Found 53(4):477–486

    Article  Google Scholar 

  30. Kang X, Ge L, Kang G-C, Mathews C (2015) Laboratory investigation of the strength, stiffness, and thermal conductivity of fly ash and lime kiln dust stabilised clay subgrade materials. Road Mater Pavement Des 16(4):928–945

    Article  Google Scholar 

  31. Kolay P, Ramesh K (2016) Reduction of expansive index, swelling and compression behavior of kaolinite and bentonite clay with sand and class C fly ash. Geotech Geol Eng 34(1):87–101

    Article  Google Scholar 

  32. Cokca E, Yazici V, Ozaydin V (2009) Stabilisation of expansive clays using granulated blast furnace slag (GBFS) and GBFS-cement. Geotech Geol Eng 27(4):489

    Article  Google Scholar 

  33. Sivrikaya O, Kıyıldı KR, Karaca Z (2014) Recycling waste from natural stone processing plants to stabilise clayey soil. Environ Earth Sci 71(10):4397–4407

    Article  Google Scholar 

  34. Saygili A (2015) Use of waste marble dust for stabilisation of clayey soil. Mater Sci 21(4):601–606

    Google Scholar 

  35. Ibrahim HH, Alshkane YM, Mawlood YI, Noori KMG, Hasan AM (2020) Improving the geotechnical properties of high expansive clay using limestone powder. Innov Infrastruct Solut 5(3):112. https://doi.org/10.1007/s41062-020-00366-z

    Article  Google Scholar 

  36. Ogila WAM (2016) The impact of natural ornamental limestone dust on swelling characteristics of high expansive soils. Environ Earth Sci 75(24):1493

    Article  Google Scholar 

  37. Pastor JL, Tomás R, Cano M, Riquelme A, Gutiérrez E (2019) Evaluation of the improvement effect of limestone powder waste in the stabilisation of swelling clayey soil. Sustainability 11(3):679

    Article  Google Scholar 

  38. ASTM (2014) Standard Test Methods. ASTM International, West Conshohocken

    Google Scholar 

  39. BS 1377-2 (1990) Methods of test for soils for civil engineering purposes—Part 2: classification test. British Standards Institution, London

    Google Scholar 

  40. Nuruzzaman M, Hossain MA (2014) Effect of soda lime glass dust on the properties of clayey soil. Glob J Res Eng 14(5)

  41. Ibrahim HH, Mawlood YI, Alshkane YM (2019) Using waste glass powder for stabilising high-plasticity clay in Erbil City-Iraq. Int J Geotech Eng. https://doi.org/10.1080/19386362.2019.1647644

    Article  Google Scholar 

  42. Fauzi A, Rahman WMNWA, Jauhari Z (2013) Utilisation waste material as stabiliser on Kuantan clayey soil stabilisation. Proced Eng 53:42–47

    Article  Google Scholar 

  43. Soosan TG, Sridharan A, Jose BT, Abraham BM (2005) Utilisation of quarry dust to improve the geotechnical properties of soils in highway construction. Geotech Test J 28(4):391–400. https://doi.org/10.1520/GTJ11768

    Article  Google Scholar 

  44. Kalkan E (2006) Utilization of red mud as a stabilisation material for the preparation of clay liners. Eng Geol 87:220

    Article  Google Scholar 

  45. Kumar BRP, Sharma RS (2004) Effect of fly ash on engineering properties of expansive soils. J Geotech Geoenviron Eng 130(7):764–767. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:7(764)

    Article  Google Scholar 

  46. Chetia M, Baruah MP, Sridharan A (2017) A effect of quarry dust on compaction characteristics of clay. In: International congress and exhibition "sustainable civil infrastructures: innovative infrastructure geotechnology", 2017. Springer, pp 78–100

  47. Khan MS, Tufail M, Mateeullah M (2018) Effects of waste glass powder on the geotechnical properties of loose subsoils. Civ Eng J 4(9):2044–2051

    Article  Google Scholar 

  48. Nelson JD, Chao KC, Overton DD, Nelson EJ (2015) Foundation engineering for expansive soils. Wiley, New York

    Book  Google Scholar 

  49. Başer O (2009) Stabilisation of expansive soils using waste marble dust

  50. Al-Azzo SI (2009) Treatment of expansive clayey soil in AL-Wahda District at Mosul City with crushed limestone. Iraqi J Earth Sci 9(2):1–10. https://www.iasj.net/iasj?func=fulltext&aId=39507

  51. Tak D, Sharma JK, Grover K (2018) Use of Kota stone powder to improve engineering properties of black cotton soil. In: Paper presented at the Indian geotechnical conference IGC 2018, Bengaluru, 13–15 December

  52. Agarwal N, Tech M, Kumar A (2015) Design of stone dust stabilized road

  53. HD_26/06 (2006) Pavement design and maintenance: design manual for roads and bridges (DMRB), vol 7. The Stationery Office London

  54. Blayi RA, Sherwani AFH, Ibrahim HH, Faraj RH, Daraei A (2020) Strength improvement of expansive soil by utilising waste glass powder. Case Stud Constr Mater 13:e00427. https://doi.org/10.1016/j.cscm.2020.e00427

    Article  Google Scholar 

  55. Garber NJ, Hoel LA (2014) Traffic and highway engineering. Cengage Learning, Boston

    Google Scholar 

  56. Venkateswarlu H, Prasad A, Prasad D, Raju PG (2015) Study on behavior of expansive soil treated with quarry dust. Int J Eng Innov Technol (IJEIT) 4(10):193–196

    Google Scholar 

  57. Nayak S, Sarvade PG (2012) Effect of cement and quarry dust on shear strength and hydraulic characteristics of lithomargic clay. Geotech Geol Eng 30(2):419–430

    Article  Google Scholar 

  58. Sridharan A, Soosan T, Jose BT, Abraham B (2006) Shear strength studies on soil-quarry dust mixtures. Geotech Geol Eng 24(5):1163–1179

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rizgar A. Blayi or Aryan Far H. Sherwani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blayi, R.A., Sherwani, A.F.H., Mahmod, F.H.R. et al. Influence of Rock Powder on the Geotechnical Behaviour of Expansive Soil. Int. J. of Geosynth. and Ground Eng. 7, 14 (2021). https://doi.org/10.1007/s40891-021-00260-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40891-021-00260-3

Keywords

Navigation