Skip to main content
Log in

A State-of-the-Art Review on Suitability of Rice Husk Ash as a Sustainable Additive for Geotechnical Applications

  • Original Paper
  • Published:
Indian Geotechnical Journal Aims and scope Submit manuscript

Abstract

Amidst the escalating urbanization and burgeoning infrastructural requisites, the imperative of deploying sustainable and efficacious soil stabilization methodologies has been amplified to unparalleled prominence. In particular, using waste materials such as rice husk ash (RHA) for soil stabilization presents -economical and sustainable solutions. RHA is a by-product of the rice milling process. This paper thoroughly reviews the existing research related to soil stabilization using RHA. Studies reviewed herein highlight RHA’s potential as a soil stabilizer due to its high silica content and pozzolanic properties. The effect of RHA on various soil properties, such as Atterberg limits, compaction characteristics, strength, swelling, and durability, are critically reviewed. This paper further discusses the effect of different factors, including RHA’s specific surface area (SSA), its interaction with various soil types, and the influence of the curing period on the overall performance of RHA-stabilized soil. The review also delves into the recent advancements in testing methodologies such as X-Ray Fluorescence (XRF) and Brunauer, Emmett, and Teller (BET) methods for soil and RHA characterization. Current challenges, research gaps, and potential areas for future research are also identified, providing a roadmap for continuing investigation in this promising field of study. Upon meticulous examination of the influence of RHA across diverse geotechnical domains, it has been discerned that integration of approximately 4–12% of RHA substantially augments the short-term and long-term engineering attributes of the soil. Through this comprehensive review, the paper contributes to the ongoing exploration of innovative, sustainable, and effective techniques for soil stabilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Abbreviations

BCS:

Black cotton soil

BET:

Brunauer, Emmett, and Teller

CBR:

California bearing ratio

CCR:

Calcium carbide residue

CKD:

Cement kiln dust

CRHA:

Cement-RHA

CSA:

Coconut shell ash

Cc :

Compression index

DCPT:

Dynamic cone penetration test

EDS:

Energy dispersive spectroscopy

E:

Modulus of elasticity

FTIR:

Fourier transform infrared spectroscopy

FSI:

Free swell index

GGBFS:

Ground granulated blast furnace slag

LOI:

Loss on ignition

LRHA:

Lime-RHA

MDD:

Maximum dry density

OMC:

Optimum moisture content

PI:

Plasticity index

RHA:

Rice husk ash

SEM:

Scanning electron microscopy

SPT:

Standard penetration test

SSA:

Specific surface area

SWCC:

Soil water characteristic curve

TEM:

Transmission electron microscopy

UCS:

Unconfined compressive strength

XPS:

X-ray photoelectron spectroscopy

XRD:

X-ray diffraction

XRF:

X-ray fluorescence

References

  1. Jun-qing Z, Wei-guang Z, Yu-qing Z, Tang H (2020) Swelling characteristics of East-Africa black cotton soil based on computer molecular simulation. J Cent South Univ 27:2054–2067. https://doi.org/10.1007/s11771-020-4430-y

    Article  CAS  Google Scholar 

  2. Liu Y, Chang CW, Namdar A, She Y, Lin CH, Yuan X et al (2019) Stabilization of expansive soil using cementing material from rice husk ash and calcium carbide residue. Constr Build Mater 221:1–11. https://doi.org/10.1016/j.conbuildmat.2019.05.157

    Article  ADS  CAS  Google Scholar 

  3. Gidigasu SKR, Gawu SKY (2013) The mode of formation, nature and geotechnical characteristics of black cotton soils-a review. Stand Sci Res Essays 1:2310–7502

    Google Scholar 

  4. Sajeer MM (2020) Study of rut behaviour of coir reinforced black cotton soil using wheel tracking apparatus. In: Proc Indian Geotech Conf. pp 573–576

  5. Perera STAM, Saberian M, Zhu J, Roychand R, Li J (2022) Effect of crushed glass on the mechanical and microstructural behavior of highly expansive clay subgrade. Case Stud Constr Mater 17:e01244. https://doi.org/10.1016/j.cscm.2022.e01244

    Article  Google Scholar 

  6. Goodarzi AR, Akbari HR, Salimi M (2016) Enhanced stabilization of highly expansive clays by mixing cement and silica fume. Appl Clay Sci 132–133:675–684. https://doi.org/10.1016/j.clay.2016.08.023

    Article  CAS  Google Scholar 

  7. Hussein SA, Ali HA (2019) Stabilization of expansive soils using polypropylene fiber. Civil Eng J 5(3):624–635. https://doi.org/10.28991/cej-2019-03091274

    Article  Google Scholar 

  8. Consoli NC, Rosa AD, Saldanha RB (2011) Variables governing strength of compacted soil-fly ash-lime mixtures. J Mater Civ Eng 23:432–440. https://doi.org/10.1061/(ASCE)mt.1943-5533.0000186

    Article  CAS  Google Scholar 

  9. Adeyanju E, Okeke CA, Akinwumi I, Busari A (2020) Subgrade stabilization using rice husk ash-based geopolymer (GRHA) and cement kiln dust (CKD). Case Stud Constr Mater 13:e00388. https://doi.org/10.1016/j.cscm.2020.e00388

    Article  Google Scholar 

  10. Nadgouda KA, Hedge RA (2010) The effect of lime stabilization on properties of black cotton soil. Indian Geotech Conf 2010:511–514

    Google Scholar 

  11. Nagarajan TN, Dhanasekar K, Rajarajachozhan R, Sriaadith V, Vignesh S (2021) Stabilization of black cotton soil using lime and phosphogypsum. Int J Emerg Trends Eng Res 9:503–507. https://doi.org/10.30534/ijeter/2021/29942021

    Article  Google Scholar 

  12. Oza JB, Gundaliya PJ (2013) Study of black cotton soil characteristics with cement waste dust and lime. Proced Eng 51:110–118. https://doi.org/10.1016/j.proeng.2013.01.017

    Article  Google Scholar 

  13. Puneeth A, Nagaraj A, Sagar AB (2021) Stabilization of black cotton soil using Portland pozzolana cement and GGBS—A case study. Int J Sci Res Civ Eng 7:7–13. https://doi.org/10.2139/ssrn.3774109

    Article  Google Scholar 

  14. Dave N, Misra AK, Srivastava A et al (2017) Setting time and standard consistency of quaternary binders: The influence of cementitious material addition and mixing. Int J Sustain Built Environ 6:30–36. https://doi.org/10.1016/j.ijsbe.2016.10.004

    Article  Google Scholar 

  15. Kumar BS, Sumedha RS, Pradeep U, Kumar KG, Reddy PP (2015) Sub grade strengthening of roads on black cotton soil using quarry dust. Int J Res Eng Technol 4(6):456–458

    Article  Google Scholar 

  16. Kumar A, Parihar A (2022) State-of-the-art review on sustainability in geotechnical applications of waste foundry sand. Indian Geotech J 52:416–436. https://doi.org/10.1007/s40098-021-00580-1

    Article  Google Scholar 

  17. Kumar R, Gadekari RS, Vani G, Mini KM (2020) Stabilization of black cotton soil and loam soil using reclaimed asphalt pavement and waste crushed glass. Mater Today Proc 24:379–387. https://doi.org/10.1016/j.matpr.2020.04.289

    Article  CAS  Google Scholar 

  18. Karhad S, Kakade S, Kapse NA (2022) Improvement of black cotton soil by using bitumen emulsion. Int Res J Mod Eng Technol Sci 04:192–196

    Google Scholar 

  19. Sai PNV, Surendra S, Arjun NVK, Sai MS, Rao CHH (2020) Reinforcement of black cotton soil by using geogrid reinforcement of black cotton soil by using geogrid, 13535-13541

  20. Chaitanya DVSK, Neeharika P (2019) Soil stabilization using geosynthetic material (steel fibers). Int J Innov Technol Explor Eng 8:553–556. https://doi.org/10.35940/ijitee.f1114.0486s419

    Article  Google Scholar 

  21. Mehta A, Parate K, Ruprai BS (2021) Stabilization of black cotton soil using flyash. Int J Res Appl Sci Eng Technol 9:1100–1106. https://doi.org/10.22214/ijraset.2021.33455

    Article  Google Scholar 

  22. Priya P, Singh VS (2021) Stabilization of black cotton soil using flyash. Int J Recent Technol Eng 9:91–96. https://doi.org/10.35940/ijrte.e5164.019521

    Article  Google Scholar 

  23. Raj A, Ganapathy C, Vinay D, Suresh C (2018) Stabilization of black cotton soil by using sodium chloride and flyash. Int J Pure Appl Math 119:1377–1389

    Google Scholar 

  24. Prasad SD, Prasad DSV, Raju GVRP (2019) Stabilization of black cotton soil using ground granulated blast furnace slag and plastic fibers. Int J Recent Technol Eng 7:633–638

    Google Scholar 

  25. Moghal AAB, Obaid AAK, Al-Refeai TO (2014) Effect of accelerated loading on the compressibility characteristics of lime-treated semiarid soils. J Mater Civ Eng 26:1009–1016. https://doi.org/10.1061/(ASCE)mt.1943-5533.0000882

    Article  CAS  Google Scholar 

  26. Vaijwade S, Paithane P, Dandge A et al (2018) Stabilization of black cotton soil by using stone dust and plastic glass strips. Int J Innov Res Sci Eng Technol 5:5527–5533. https://doi.org/10.15680/IJIRSET.2018.0705144

    Article  Google Scholar 

  27. Darsi BP, Molugaram K, Madiraju SVH (2021) Subgrade black cotton soil stabilization using ground granulated blast-furnace slag (GGBS) and lime, an inorganic mineral. Environ Sci Proc 6:1–15. https://doi.org/10.3390/iecms2021-09390

    Article  Google Scholar 

  28. Chang I, Lee M, Tran ATP et al (2020) Review on biopolymer-based soil treatment (BPST) technology in geotechnical engineering practices. Transp Geotech 24:100385. https://doi.org/10.1016/j.trgeo.2020.100385

    Article  Google Scholar 

  29. Fatehi H, Ong DEL, Yu J, Chang I (2021) Biopolymers as green binders for soil improvement in geotechnical applications: A review. Geosci 11:1–39. https://doi.org/10.3390/geosciences11070291

    Article  CAS  Google Scholar 

  30. Zhang P, Huang J, Zhang P et al (2019) Swelling suppression of black cotton soil by means of liquid immersion and surface modification. Heliyon 5:e02999. https://doi.org/10.1016/j.heliyon.2019.e02999

    Article  PubMed  PubMed Central  Google Scholar 

  31. Manzoor S, Sachar A (2018) Stabilization of black cotton soil using terrazyme. Int J Innov Res Comput Sci Technol 8:17761–17764

    Google Scholar 

  32. Chaugule M, Deore S, Gawade K, Tijare A, Banne S (2017) Improvement of black cotton soil properties using E-waste. IOSR J Mech Civ Eng 14:76–81. https://doi.org/10.9790/1684-1403017681

    Article  Google Scholar 

  33. Sekhar DC, Nayak S, Preetham HK (2017) Influence of granulated blast furnace slag and cement on the strength properties of lithomargic clay. Indian Geotech J 47:384–392. https://doi.org/10.1007/s40098-017-0228-8

    Article  Google Scholar 

  34. Chaudhary V, Singh J (2023) Impact of nano-silica and cement on geotechnical properties of bentonite soil. Indian Geotech J. https://doi.org/10.1007/s40098-023-00816-2

    Article  Google Scholar 

  35. Pappu A, Saxena M, Asolekar SR (2007) Solid wastes generation in India and their recycling potential in building materials. Build Environ 42:2311–2320. https://doi.org/10.1016/j.buildenv.2006.04.015

    Article  Google Scholar 

  36. Chandrasekhar S, Satyanarayana KG, Pramada PN, Raghavan P (2019) Review Processing, properties and applications of reactive silica from rice husk-an overview. Outlook Agric 48:117–125. https://doi.org/10.1177/0030727018821384

    Article  Google Scholar 

  37. Singh B (2018) Rice husk ash. Waste Suppl Cem Mater Concr Charact Prop Appl 2018:417–460. https://doi.org/10.1016/B978-0-08-102156-9.00013-4

    Article  Google Scholar 

  38. Fernando S, Nasvi MCM, Gunasekara C, Law DW, Setunge S, Dissanayake R (2021) Systematic review on alkali-activated binders blended with rice husk ash. J Mater Civ Eng 33:04021229. https://doi.org/10.1061/(asce)mt.1943-5533.0003825

    Article  CAS  Google Scholar 

  39. Boateng AA, Skeete DA (1990) Incineration of rice hull for use as a cementitious material: the Guyana experience. Cem Concr Res 20:795–802. https://doi.org/10.1016/0008-8846(90)90013-N

    Article  CAS  Google Scholar 

  40. Khan MNN, Jamil M, Kaish ABMA, Zain MFM (2014) An overview on manufacturing of rice husk ash as supplementary cementitious material. Aust J Basic Appl Sci 2014:176–181

    Google Scholar 

  41. Das SK, Adediran A, Rodrigue Kaze C, Mohammed Mustakim S, Leklou N (2022) Production, characteristics, and utilization of rice husk ash in alkali-activated materials: an overview of fresh and hardened state properties. Constr Build Mater 345:128341. https://doi.org/10.1016/j.conbuildmat.2022.128341

    Article  CAS  Google Scholar 

  42. Koteswara RD, Pranav PRT, Anusha M (2012) Stabilization of expansive soil with rice husk ash, lime and gypsum- an experimental study. Int J Eng Sci Technol 3:8076–8085

    Google Scholar 

  43. Raheem AA, Oriola KO, Kareem MA, Abdulwahab R (2021) Investigation on thermal properties of rice husk ash-blended palm kernel shell concrete. Environ Challenges 5:100284. https://doi.org/10.1016/j.envc.2021.100284

    Article  Google Scholar 

  44. Brahmachary TK, Ahsan MK, Rokonuzzaman M (2019) Impact of rice husk ash (RHA) and nylon fiber on the bearing capacity of organic soil. SN Appl Sci 1:1–13. https://doi.org/10.1007/s42452-019-0275-0

    Article  CAS  Google Scholar 

  45. Rukzon S, Chindaprasirt P, Mahachai R (2009) Effect of grinding on chemical and physical properties of rice husk ash. Int J Miner Metall Mater 16:242–247. https://doi.org/10.1016/S1674-4799(09)60041-8

    Article  CAS  Google Scholar 

  46. Walker R, Pavía S (2011) Physical properties and reactivity of pozzolans, and their influence on the properties of lime-pozzolan pastes. Mater Struct Constr 44:1139–1150. https://doi.org/10.1617/s11527-010-9689-2

    Article  CAS  Google Scholar 

  47. Muthadhi A, Kothandaraman S (2010) Optimum production conditions for reactive rice husk ash. Mater Struct Constr 43:1303–1315. https://doi.org/10.1617/s11527-010-9581-0

    Article  CAS  Google Scholar 

  48. Ganesan K, Rajagopal K, Thangavel K (2008) Rice husk ash blended cement: assessment of optimal level of replacement for strength and permeability properties of concrete. Constr Build Mater 22:1675–1683. https://doi.org/10.1016/j.conbuildmat.2007.06.011

    Article  Google Scholar 

  49. Feng Q, Yamamichi H, Shoya M, Sugita S (2004) Study on the pozzolanic properties of rice husk ash by hydrochloric acid pretreatment. Cem Concr Res 34:521–526. https://doi.org/10.1016/j.cemconres.2003.09.005

    Article  CAS  Google Scholar 

  50. Hwang CL, Huynh TP (2015) Effect of alkali-activator and rice husk ash content on strength development of fly ash and residual rice husk ash-based geopolymers. Constr Build Mater 101:1–9. https://doi.org/10.1016/j.conbuildmat.2015.10.025

    Article  ADS  Google Scholar 

  51. Seco A, Ramirez F, Miqueleiz L, Urmeneta P, Garca B, Prieto E et al (2012) Types of waste for the production of pozzolanic materials-a review. Ind Waste. https://doi.org/10.5772/36285

    Article  Google Scholar 

  52. Obasi NL, Alimba MU (2006) The suitability of lime rice husk ash cement as construction material. Niger J Technol 25:98–105

    Google Scholar 

  53. Alhassan M (2008) Potentials of rice husk ash for soil stabilization. AU J Technol 11:246–250

    Google Scholar 

  54. Huang H, Gao X, Wang H, Ye H (2017) Influence of rice husk ash on strength and permeability of ultra-high performance concrete. Constr Build Mater 149:621–628. https://doi.org/10.1016/j.conbuildmat.2017.05.155

    Article  CAS  Google Scholar 

  55. Sani JE, Yohanna P, Chukwujama IA (2020) Effect of rice husk ash admixed with treated sisal fibre on properties of lateritic soil as a road construction material. J King Saud Univ-Eng Sci 32:11–18. https://doi.org/10.1016/j.jksues.2018.11.001

    Article  Google Scholar 

  56. Mehta A, Siddique R (2018) Sustainable geopolymer concrete using ground granulated blast furnace slag and rice husk ash: strength and permeability properties. J Clean Prod 205:49–57. https://doi.org/10.1016/j.jclepro.2018.08.313

    Article  CAS  Google Scholar 

  57. Dauda D, Ijimdiya T (2019) Effect of rice husk ash on the physicochemical properties of compost. Indones J Chem 19:967–974. https://doi.org/10.22146/ijc.39704

    Article  Google Scholar 

  58. Yaw MI, Emmanuel A, K YPP, Senyo DK (2015) Feasibility of using cocoa pod husk ash (CPHA ) as a stabilizer in the production of compressed earth bricks. Int J Eng Res Gen Sci. 3:514–24

  59. Etim RK, Attah IC, Yohanna P (2020) Experimental study on potential of oyster shell ash in structural strength improvement of lateritic soil for road construction. Int J Pavement Res Technol 13:341–351. https://doi.org/10.1007/s42947-020-0290-y

    Article  Google Scholar 

  60. Fungaro DA, Reis TV, Logli MA, Oliveira NA (2014) Synthesis and characterization of zeolitic material derived from sugarcane straw ash. Am J Environ Protect 2(1):16–21. https://doi.org/10.12691/env-2-1-4

    Article  CAS  Google Scholar 

  61. Etim RK, Ekpo DU, Ebong UB, Usanga IN (2022) Influence of periwinkle shell ash on the strength properties of cement-stabilized lateritic soil. Int J Pavement Res Technol 15:1062–1078. https://doi.org/10.1007/s42947-021-00072-8

    Article  Google Scholar 

  62. Oriola F, George M (2015) Groundnut shell ash stabilization of black cotton soil. Electron J Geotech Eng 15:415–428

    Google Scholar 

  63. Adepoju AD, Adebisi JA, Odusote JK, Ahmed II, Hassan SB (2016) Preparation of silica from cassava periderm. J Solid Waste Technol Manag 42:216–221. https://doi.org/10.5276/JSWTM.2016.216

    Article  CAS  Google Scholar 

  64. Ojewumi ME, Adedoyin Ayomide A, Mopelola Obanla O, Olufemi Awolu O, Omotayo Ojewumi E (2014) Pozzolanic properties of waste agricultural biomass-African locust bean pod waste. World J Environ Biosci 6:1–7

    Google Scholar 

  65. Terzioglu P, Yucel S (2012) Synthesis of magnesium silicate from wheat husk ash: effects of parameters on structural and surface properties. BioResources 7:5435–5447. https://doi.org/10.15376/biores.7.4.5435-5447

    Article  Google Scholar 

  66. Faizul CP, Abdullah C, Bari MF (2016) Palm ash as an alternative source for silica production. MATEC Web Conf 2016:78. https://doi.org/10.1051/matecconf/20167801062

    Article  CAS  Google Scholar 

  67. Nnochiri ES, Aderinlewo OO (2016) Geotechnical properties of lateritic soil stabilized with banana leaves ash. J Eng Technol 1:116–119

    Google Scholar 

  68. Abdulwahab MT, Uche OAU, Suleiman G (2017) Mechanical properties of millet husk ash bitumen stabilized soil block. Niger J Technol Dev 14:34. https://doi.org/10.4314/njtd.v14i1.5

    Article  Google Scholar 

  69. Norsuraya S, Fazlena H, Norhasyimi R (2016) Sugarcane bagasse as a renewable source of silica to synthesize Santa barbara amorphous-15 (SBA-15). Proced Eng 148:839–846. https://doi.org/10.1016/j.proeng.2016.06.627

    Article  CAS  Google Scholar 

  70. Alaneme GU, Mbadike EM (2021) Experimental investigation of bambara nut shell ash in the production of concrete and mortar. Innov Infrastruct Solut 6:1–13. https://doi.org/10.1007/s41062-020-00445-1

    Article  Google Scholar 

  71. Utama PS, Yamsaensung R, Sangwichien C (2018) Silica gel derived from palm oil mill fly ash. Songklanakarin J Sci Technol 40:121–126. https://doi.org/10.14456/sjst-psu.2018.27

    Article  CAS  Google Scholar 

  72. Raheem AA, Olasunkanmi BS, Folorunso CS (2012) Saw dust ash as partial replacement for cement in concrete. Organ Technol Manag Constr An Int J 2012:4. https://doi.org/10.5592/otmcj.2012.2.3

    Article  Google Scholar 

  73. Adesanya DA, Raheem AA (2009) Development of corn cob ash blended cement. Constr Build Mater 23:347–352. https://doi.org/10.1016/j.conbuildmat.2007.11.013

    Article  Google Scholar 

  74. Chakraborty A, Roy S (2016) Study on the properties of expansive clayey soil using coconut husk ash (CHA) as stabilizer. ADBU J Eng Technol Study 4:94–97

    Google Scholar 

  75. Amu OO, Adetuberu AA (2010) Characteristics of bamboo leaf ash stabilization on lateritic soil in highway construction. Int J Eng Technol 2:212–219

    CAS  Google Scholar 

  76. Xu W, Lo TY, Memon SA (2012) Microstructure and reactivity of rice husk ash. Constr Build Mater 29:541–547. https://doi.org/10.1016/j.conbuildmat.2011.11.005

    Article  Google Scholar 

  77. Jantasom K, Somrud P, Noothongkaew S, An KS, Tipparach U, Pukird S (2013) Investigation of nanostructures materials from rice husk ash by thermal process. Adv Mater Res 717:58–61. https://doi.org/10.4028/www.scientific.net/AMR.717.58

    Article  CAS  Google Scholar 

  78. Abiodun YO, Jimoh AA (2018) Microstructural characterization, physical and chemical properties of rice husk ash as viable pozzolan in building material: a case study of some Nigerian grown rice varieties. Niger J Technol 37:71. https://doi.org/10.4314/njt.v37i1.10

    Article  Google Scholar 

  79. Deshmukh P, Bhatt J, Peshwe D, Pathak S (2012) Determination of silica activity index and XRD, SEM, and EDS studies of amorphous SiO2 extracted from rice husk ash. Trans Indian Inst Met 65:63–70. https://doi.org/10.1007/s12666-011-0071-z

    Article  CAS  Google Scholar 

  80. Ikram N, Akhter M (1988) X-ray diffraction analysis of silicon prepared from rice husk ash. J Mater Sci 23:2379–2381. https://doi.org/10.1007/BF01111891

    Article  ADS  CAS  Google Scholar 

  81. Mehta PK (1973) Siliceous ashes and hydraulic cements prepared therefrom. United States Patent 4105459

  82. Oktavia DL, Dewi R, Saloma SY, Hadinata F, Yulindasari Y (2019) The effects of rice husk ash substitution on physical and mechanical properties of clay. Int J Sci Technol Res 8:465–470

    Google Scholar 

  83. Habeeb GA, Fayyadh MM (2009) Rice Husk Ash concrete: the effect of RHA average particle size on mechanical properties and drying shrinkage. Aust J Basic Appl Sci 3:1616–1622

    CAS  Google Scholar 

  84. Bui DD, Hu J, Stroeven P (2005) Particle size effect on the strength of rice husk ash blended gap-graded Portland cement concrete. Cem Concr Compos 27:357–366. https://doi.org/10.1016/j.cemconcomp.2004.05.002

    Article  CAS  Google Scholar 

  85. Rao GR, Sastry ARK, Rohatgi PK (1989) Nature and reactivity of silica available in rice husk and its ashes. Bull Mater Sci 12:469–479. https://doi.org/10.1007/BF02744917

    Article  CAS  Google Scholar 

  86. Chagas G, Dias R, Filho T, Marcelo L, De ME, Fairbairn R et al (2011) Influence of particle size and specific surface area on the pozzolanic activity of residual rice husk ash. Cem Concr Compos 33:529–534. https://doi.org/10.1016/j.cemconcomp.2011.02.005

    Article  CAS  Google Scholar 

  87. Salas A, Delvasto S, de Gutierrez RM, Lange D (2009) Comparison of two processes for treating rice husk ash for use in high-performance concrete. Cem Concr Res 39:773–778. https://doi.org/10.1016/j.cemconres.2009.05.006

    Article  CAS  Google Scholar 

  88. Zhang MH, Malhotra VM (1996) High-performance concrete incorporating rice husk ash as a supplementary cementing material. ACI Mater J 93:629–636

    CAS  Google Scholar 

  89. Ramezanianpour AA, Mahdikhani M, Ahmadibeni G (2009) The effect of rice husk ash on mechanical properties and durability of sustainable concretes. Int J Civ Eng 7:83–91

    Google Scholar 

  90. Kizhakkumodom Venkatanarayanan H, Rangaraju PR (2015) Effect of grinding of low-carbon rice husk ash on the microstructure and performance properties of blended cement concrete. Cem Concr Compos 55:348–363. https://doi.org/10.1016/j.cemconcomp.2014.09.021

    Article  CAS  Google Scholar 

  91. Kannan V, Ganesan K (2014) Chloride and chemical resistance of self-compacting concrete containing rice husk ash and metakaolin. Constr Build Mater 51:225–234. https://doi.org/10.1016/j.conbuildmat.2013.10.050

    Article  Google Scholar 

  92. Gastaldini ALG, Isaia GC, Gomes NS, Sperb JEK (2007) Chloride penetration and carbonation in concrete with rice husk ash and chemical activators. Cem Concr Compos 29:176–180. https://doi.org/10.1016/j.cemconcomp.2006.11.010

    Article  CAS  Google Scholar 

  93. Rêgo JHS, Nepomuceno AA, Figueiredo EP, Hasparyk NP (2015) Microstructure of cement pastes with residual rice husk ash of low amorphous silica content. Constr Build Mater 80:56–68. https://doi.org/10.1016/j.conbuildmat.2014.12.059

    Article  Google Scholar 

  94. Chatveera B, Lertwattanaruk P (2014) Evaluation of nitric and acetic acid resistance of cement mortars containing high-volume black rice husk ash. J Environ Manage 133:365–373. https://doi.org/10.1016/j.jenvman.2013.12.010

    Article  CAS  PubMed  Google Scholar 

  95. Ferraro RM, Nanni A, Vempati RK, Matta F (2010) Carbon neutral off-white rice husk ash as a partial white cement replacement. J Mater Civ Eng 22:1078–1083. https://doi.org/10.1061/(ASCE)mt.1943-5533.0000112

    Article  CAS  Google Scholar 

  96. Daryati Ramadhan MA (2020) Improvement of expansive soils stabilized with rice husk ash (RHA). J Phys Conf Ser. https://doi.org/10.1088/1742-6596/1625/1/012006

    Article  Google Scholar 

  97. Petry TM, Glazier EJ (2004) Project report: the effect of organic content on lime treatment of highly expansive clay. Archit Environ Eng Univ Missouri, Dep Civil

    Google Scholar 

  98. Behak L (2017) Soil stabilization with rice husk ash. Rice Technol Prod. https://doi.org/10.5772/66311

    Article  Google Scholar 

  99. Duong NT (2022) Effect of rice husk ash on unconfined compressive strength of soil-cement admixture. Suranaree J Sci Technol 29:1

    Google Scholar 

  100. Onyelowe KC, Obianyo II, Onwualu AP, Onyia ME, Moses C (2021) Morphology and mineralogy of rice husk ash treated soil for green and sustainable landfill liner construction. Clean Mater 1:100007. https://doi.org/10.1016/j.clema.2021.100007

    Article  CAS  Google Scholar 

  101. Muñoz YO, Izzo RLS, De AJL, Baldovino JA, Rose JL (2021) The role of rice husk ash, cement, and polypropylene fibers on the mechanical behavior of a soil from Guabirotuba formation. Transp Geotech. https://doi.org/10.1016/j.trgeo.2021.100673

    Article  Google Scholar 

  102. Ali FH, Adnan A, Choy CK (1992) Geotechnical properties of a chemically stabilized soil from Malaysia with rice husk ash as an additive. Geotech Geol Eng 10:117–134. https://doi.org/10.1007/BF00881147

    Article  Google Scholar 

  103. Jalal FE, Mulk S, Memon SA, Jamhiri B, Naseem A (2021) Strength, hydraulic, and microstructural characteristics of expansive soils incorporating marble dust and rice husk ash. Adv Civ Eng 2021:1–18. https://doi.org/10.1155/2021/9918757

    Article  Google Scholar 

  104. Basha EA, Hashim R, Mahmud HB, Muntohar AS (2005) Stabilization of residual soil with rice husk ash and cement. Constr Build Mater 19:448–453. https://doi.org/10.1016/j.conbuildmat.2004.08.001

    Article  Google Scholar 

  105. Cordeiro G, Dias R, Filho T, Marcelo L, De ME, Fairbairn R et al (2011) Influence of particle size and specific surface area on the pozzolanic activity of residual rice husk ash. Cem Concr Compos 33:529–534. https://doi.org/10.1016/j.cemconcomp.2011.02.005

    Article  CAS  Google Scholar 

  106. Pathiraja GC, De Silva DK, Dhanapala L, Nanayakkara N (2015) Investigating the surface characteristics of chemically modified and unmodified rice husk ash: bottom-up approach for adsorptive removal of water contaminants. Desalin Water Treat 54:547–556. https://doi.org/10.1080/19443994.2014.883133

    Article  CAS  Google Scholar 

  107. Sarker D, Apu OS, Kumar N, Wang JX, Lynam JG (2023) Sustainable lignin to enhance engineering properties of unsaturated expansive subgrade soils. J Mater Civ Eng 35:1–11. https://doi.org/10.1061/jmcee7.mteng-15008

    Article  CAS  Google Scholar 

  108. Bishop JL, Pieters CM, Edwards JO (1994) Infrared spectroscopic analyses on the nature of water in montmorillonite. Clays Clay Miner 42:702–716. https://doi.org/10.1346/CCMN.1994.0420606

    Article  ADS  CAS  Google Scholar 

  109. Chandrasekhar S, Pramada PN, Praveen L (2005) Effect of organic acid treatment on the properties of rice husk silica. J Mater Sci 40:6535–6544. https://doi.org/10.1007/s10853-005-1816-z

    Article  ADS  CAS  Google Scholar 

  110. Sivakumar G, Ravibaskar R (2009) Investigation on the hydration properties of the rice husk ash cement using FTIR and SEM. Appl Phys Res 1:71–77. https://doi.org/10.5539/apr.v1n2p71

    Article  CAS  Google Scholar 

  111. Coates J (2006) Interpretation of infrared spectra of soil minerals. Soil Sci 112:10815–10837. https://doi.org/10.1097/00010694-197107000-00005

    Article  Google Scholar 

  112. Nakbanpote W, Goodman BA, Thiravetyan P (2007) Copper adsorption on rice husk derived materials studied by EPR and FTIR. Colloids Surf A Physicochem Eng Asp 304:7–13. https://doi.org/10.1016/j.colsurfa.2007.04.013

    Article  CAS  Google Scholar 

  113. Nahar N, Owino AO, Khan SK, Hossain Z, Tamaki N (2021) Effects of controlled burn rice husk ash on the geotechnical properties of soil. J Agric Eng 52:1216. https://doi.org/10.4081/JAE.2021.1216

    Article  Google Scholar 

  114. Jiang X, Huang Z, Ma F, Luo X (2019) Analysis of strength development and soil-water characteristics of rice husk ash-lime stabilized soft soil. Materials 12:3873. https://doi.org/10.3390/ma122333873

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ma J, Su Y, Liu Y, Tao X (2020) Strength and Microfabric of Expansive Soil Improved with Rice Husk Ash and Lime. Adv Civ Eng 2020:10–17. https://doi.org/10.1155/2020/9646205

    Article  Google Scholar 

  116. Karim MR, Zain MFM, Jamil M, Lai FC (2015) Development of a zero-cement binder using slag, fly ash, and rice husk ash with chemical activator. Adv Mater Sci Eng. https://doi.org/10.1155/2015/247065

    Article  Google Scholar 

  117. Chindaprasirt P, Rukzon S, Sirivivatnanon V (2008) Resistance to chloride penetration of blended Portland cement mortar containing palm oil fuel ash, rice husk ash and fly ash. Constr Build Mater 22:932–938. https://doi.org/10.1016/j.conbuildmat.2006.12.001

    Article  Google Scholar 

  118. Kang SH, Hong SG, Moon J (2019) The use of rice husk ash as reactive filler in ultra-high performance concrete. Cem Concr Res 115:389–400. https://doi.org/10.1016/j.cemconres.2018.09.004

    Article  CAS  Google Scholar 

  119. Paya J, Monzo J, Borrachero MV, Peris-Mora E, Ordonez LM (2000) Studies on crystalline rice husk ashes and the activation of their pozzolanic properties. Stud Environ Sci 48:507–512. https://doi.org/10.1016/S0166-1116(08)70442-4

    Article  Google Scholar 

  120. Jittin V, Bahurudeen A, Ajinkya SD (2020) Utilisation of rice husk ash for cleaner production of different construction products. J Clean Prod 263:121578. https://doi.org/10.1016/j.jclepro.2020.121578

    Article  CAS  Google Scholar 

  121. Mujiyanti DR, Ariyani D, Lisa M (2021) Silica content analysis of Siam UNUS rice husks from South Kalimantan. J Chem Res 9:81–87. https://doi.org/10.30598//ijcr.2021.9-muj

    Article  CAS  Google Scholar 

  122. Reis JB, Pelisser G, Levandoski WMK, Ferrazzo ST, Mota JD, Silveira AA et al (2022) Experimental investigation of binder based on rice husk ash and eggshell lime on soil stabilization under acidic attack. Sci Rep 12:1–11. https://doi.org/10.1038/s41598-022-11529-6

    Article  CAS  Google Scholar 

  123. Ogwang G, Olupot PW, Kasedde H, Menya E, Storz H, Kiros Y (2021) Experimental evaluation of rice husk ash for applications in geopolymer mortars. J Bioresour Bioprod 6:160–167. https://doi.org/10.1016/j.jobab.2021.02.008

    Article  CAS  Google Scholar 

  124. Saad SA, Nuruddin MF, Shafiq N, Ali M (2016) The effect of incineration temperature to the chemical and physical properties of ultrafine treated rice husk ash (UFTRHA) as supplementary cementing material (SCM). Proced Eng 148:163–167. https://doi.org/10.1016/j.proeng.2016.06.515

    Article  CAS  Google Scholar 

  125. Taku JK, Amartey YD, Kassar T (2016) Comparative elemental analysis of rice husk ash calcined at different temperatures using X-ray fluorescence (XRF) technique. Am J Civ Eng Archit 4:28–31x. https://doi.org/10.12691/ajcea-4-1-4

    Article  CAS  Google Scholar 

  126. Yuan HY, Ding LJ, Zama EF, Liu PP, Hozzein WN, Zhu YG (2018) Biochar modulates methanogenesis through electron syntrophy of microorganisms with ethanol as a substrate. Environ Sci Technol 52:12198–12207. https://doi.org/10.1021/acs.est.8b04121

    Article  ADS  CAS  PubMed  Google Scholar 

  127. Akinyele JO, Salim RW, Oikelome KO, Olateju OT (2015) The use of rice husk ash as a stabilizing agent in lateritic clay soil. Int J Civ Environ Eng 9:1418–1422

    Google Scholar 

  128. Fattah MY, Rahil FH, Al-Soudany KYH (2013) Improvement of clayey soil characteristics using rice husk ash. J Civ Eng Urban 3:1

    Google Scholar 

  129. Nagaraju VT, Satyanarayana PVV (2019) Geotechnical aspects of various constructions along the canal embankment using rice husk ash as stabilizer. Springer Singapore 14:143–150. https://doi.org/10.1007/978-981-13-0559-7_16

    Article  Google Scholar 

  130. Oshioname EA, Pau Y, Mustapha A, Abdullahi A (2022) Consolidation characteristics of lateritic soil treated with rice husk ash. Malays J Civ Eng 1:19–28

    Article  Google Scholar 

  131. Qu J, Li B, Wei T, Li C, Liu B (2014) Effects of rice-husk ash on soil consistency and compactibility. CATENA 122:54–60. https://doi.org/10.1016/j.catena.2014.05.016

    Article  CAS  Google Scholar 

  132. Yadav AK, Gaurav K, Kishor R, Suman SK (2017) Stabilization of alluvial soil for subgrade using rice husk ash, sugarcane bagasse ash, and cow dung ash for rural roads. Int J Pavement Res Technol 10:254–261. https://doi.org/10.1016/j.ijprt.2017.02.001

    Article  Google Scholar 

  133. Rahman ZA, Ashari HH, Sahibin AR, Tukimat L, Wan I, Razi M (2014) Effect of rice husk ash addition on geotechnical characteristics of treated residual soil. J Agric Environ Sci 14:1368–1377. https://doi.org/10.5829/idosi.aejaes.2014.14.12.12462

    Article  Google Scholar 

  134. Muntohar AS, Hantoro G (2000) Influence of rice husk ash and lime on engineering properties clayey subgrade. Electron J Geotech Eng 2000:5

    Google Scholar 

  135. Babu BM, Ravali G, Saikiran C et al (2023) Soil stabilization by using rice husk ash. J Eng Sci 14:529–540

    Google Scholar 

  136. Karatai TR, Kaluli JW, Kabubo C, Thiong’o G, (2017) Soil stabilization using rice husk ash and natural lime as an alternative to cutting and filling in road construction. J Constr Eng Manag 143:04016127. https://doi.org/10.1061/(ASCE)co.1943-7862.0001235

    Article  Google Scholar 

  137. Okafor FO, Okonkwo UN (2009) Effects of rice husk ash on some geotechnical properties of lateritic soil. Leonardo Electron J Pract Technol 8:67–74

    Google Scholar 

  138. Choobbasti AJ, Ghodrat H, Vahdatirad MJ, Firouzian S, Barari A, Torabi M et al (2010) Influence of using rice husk ash in soil stabilization method with lime. Front Earth Sci China 4:471–480. https://doi.org/10.1007/s11707-010-0138-x

    Article  CAS  Google Scholar 

  139. Anupam AK, Kumar P, Ransingchung GD (2014) Performance evaluation of structural properties for soil stabilised using rice husk ash. Road Mater Pavement Des 15:539–553. https://doi.org/10.1080/14680629.2014.891533

    Article  CAS  Google Scholar 

  140. Jain A, Choudhary AK, Jha JN (2020) Influence of rice husk ash on the swelling and strength characteristics of expansive soil. Geotech Geol Eng 38:2293–2302. https://doi.org/10.1007/s10706-019-01087-6

    Article  Google Scholar 

  141. Sakr MAH, Omar AE, Ene A, Hanfi MY (2022) Effect of various proportions of rice husk powder on swelling soil from New Cairo city. Egypt Appl Sci 12:1616. https://doi.org/10.3390/app12031616

    Article  CAS  Google Scholar 

  142. Aziz M, Saleem M, Irfan M (2015) Engineering behavior of expansive soils treated with rice husk ash. Geomech Eng 8:173–186. https://doi.org/10.12989/gae.2015.8.2.173

    Article  Google Scholar 

  143. Muntohar AS (2006) Swelling characteristics and improvement of expansive soil with rice husk ash. Expans Soils. https://doi.org/10.1201/9780203968079.ch30

    Article  Google Scholar 

  144. Narasihma AV, Penchalaiah B, Chittranjan M, Ramesh P (2014) Compressibility behaviour of black cotton soil admixed with lime and rice-husk ash. Int J Innov Res Sci Eng Technol 3:11473–11480

    Google Scholar 

  145. Chamberlin K, Rao MR, Suresh K (2023) Impact of rice husk ash and xanthan gum in road works by improving the characteristics of expansive soil (black cotton soil)-an inclusive study. E3S Web Conf 391:01004. https://doi.org/10.1051/e3sconf/202339101004

    Article  CAS  Google Scholar 

  146. Rao PV, Kumar GS, Prasanthi B (2018) A parametric study on black cotton soil. Int J Adv Manag Technol Eng Sci 8:623–632

    Google Scholar 

  147. Brooks RM (2009) Soil stabilization with flyash and rice husk ash. Int J Res Rev Appl Sci 1:2076–2734

    Google Scholar 

  148. Malik V, Priyadarshee A (2018) Compaction and swelling behavior of black cotton soil mixed with different non-cementitious materials. Int J Geotech Eng 12:413–419. https://doi.org/10.1080/19386362.2017.1288355

    Article  CAS  Google Scholar 

  149. Francis IA, Venantus A (2013) Models and optimization of rice husk ash-clay soil stabilization. J Civ Eng Archit 7:1260–1266. https://doi.org/10.17265/1934-7359/2013.10.009

    Article  Google Scholar 

  150. Ikubuwaje CO, Boluwade EA (2017) Modifying effects of rice husk ash on the geotechnical characteristics of low shear strength soils. Int J Eng Sci 6:29–32. https://doi.org/10.9790/1813-0609032932

    Article  Google Scholar 

  151. Roy A (2014) Soil stabilization using rice husk ash and cement. Int J Civ Eng Res 5:49–54

    Google Scholar 

  152. Hossain KMA (2011) Stabilized soils incorporating combinations of rice husk ash and cement kiln dust. J Mater Civ Eng 23:1320–1327. https://doi.org/10.1061/(ASCE)mt.1943-5533.0000310

    Article  Google Scholar 

  153. Ramesh HN, Manjunatha BV (2020) Justification of strength properties of microstructural changes in the black cotton soil stabilized with rice husk ash and carbide lime in the presence of sodium salts. SN Appl Sci 2:1–12. https://doi.org/10.1007/s42452-020-2226-1

    Article  CAS  Google Scholar 

  154. Abarajithan G, Kumar RP, Srikanth R, Barathidason P (2017) Feasibility of soil stabilization using rice husk ash and coir fibre. Int J Eng Res V6:552–556. https://doi.org/10.17577/ijertv6is040502

    Article  Google Scholar 

  155. Ghutke V, Bhandari P, Agrawal V (2021) Stabilization of soil using rice husk ash and fly ash. Lect Notes Civ Eng 88:517–524. https://doi.org/10.1007/978-981-15-6237-2_43

    Article  Google Scholar 

  156. Rahman MA (1987) Effects of cement-rice husk ash mixtures on geotechnical properties of lateritic soils. West Indian J Eng 12:62–70. https://doi.org/10.3208/sandf1972.27.2

    Article  Google Scholar 

  157. Oviya R, Manikandan R (2016) An experimental investigation on stabilizing the soil using rice husk ash with lime as admixture. Int J Inf Futur Res 3:3511–3519

    Google Scholar 

  158. Sharma RS, Phanikumar BR, Rao BV (2008) Engineering behavior of a remolded expansive clay blended with lime, calcium chloride, and rice-husk ash. J Mater Civ Eng 20:509–515. https://doi.org/10.1061/(ASCE)0899-1561(2008)20:8(509)

    Article  CAS  Google Scholar 

  159. Tambe R, Asturias R, Marie Robles AC, Taclendo C, Lalisan C (2022) Effect of alkali-activated rice husk ash on the strength improvement of compacted Koronadal fine sandy loam using direct shear loading. In: IEEE 14th International Conference on Humanoid, Nanotechnology, Nanotechnology, Information Technology, Communication and Control, Environment, and Management HNICEM. https://doi.org/10.1109/HNICEM57413.2022.10109394

  160. Eliaslankaran Z, Daud NNN, Yusoff ZM, Rostami V (2021) Evaluation of the effects of cement and lime with rice husk ash as an additive on strength behavior of coastal soil. Materials 14:1–15. https://doi.org/10.3390/ma14051140

    Article  CAS  Google Scholar 

  161. Chen Z, Xu Y, Shivkumar S (2018) Microstructure and tensile properties of various varieties of rice husk. J Sci Food Agric 98:1061–1070. https://doi.org/10.1002/jsfa.8556

    Article  CAS  PubMed  Google Scholar 

  162. Taha MMM, Feng CP, Ahmed SHS (2021) Modification of mechanical properties of expansive soil from north China by using rice husk ash. Materials 14:1–13. https://doi.org/10.3390/ma14112789

    Article  CAS  Google Scholar 

  163. Vaidya MR, Shinde HH (2018) Effects of rice husk ash and fly ash on index properties of black cotton soil. Int Res J Eng Technol 5:597–601

    Google Scholar 

  164. Ewa D, Akeke GA, Okoi D (2018) Influence of rice husk ash source variability on road subgrade properties. Niger J Technol 37:582. https://doi.org/10.4314/njt.v37i3.4

    Article  Google Scholar 

  165. Anupam AK, Kumar P, Ransinchung RNGD (2016) Effect of fly ash and rice husk ash on permanent deformation behaviour of subgrade soil under cyclic triaxial loading. Transp Res Proced 17:596–606. https://doi.org/10.1016/j.trpro.2016.11.114

    Article  Google Scholar 

  166. Lankaran ZE, Nik Daud NN, Rostami V, Yusoff ZM (2022) Consolidated drained triaxial test on treated coastal soil and finite element analysis using PLAXIS 2D. Adv Mater Sci Eng. https://doi.org/10.1155/2022/7263333

    Article  Google Scholar 

  167. Yue J, Su H, Song X, Xu X, Zhao L, Zhao G et al (2022) Experimental study on the cracking and mechanical properties of lime soil with different slaking conditions of newly repaired earthen city walls. Materials. https://doi.org/10.3390/ma15124151

    Article  PubMed  PubMed Central  Google Scholar 

  168. Salimzadehshooiili M (2023) Investigation of the effect of frequency on shear strength and damping of pure sand and sand stabilised with rice husk ash using cyclic triaxial tests. Adv Civ Archit Eng 14(26):25–39

    Google Scholar 

  169. Ashango AA, Patra NR (2014) Static and cyclic properties of clay subgrade stabilised with rice husk ash and Portland slag cement. Int J Pavement Eng 15:906–916. https://doi.org/10.1080/10298436.2014.893323

    Article  CAS  Google Scholar 

  170. Sarkar G, Islam R, Alamgir M, Rokonuzzaman M (2012) Interpretation of rice husk ash on geotechnical properties of cohesive soil. Glob J Res Eng Civ Struct Eng 12:1–7

    Google Scholar 

  171. Eberemu AO, Sada H (2014) Compressibility characteristics of compacted black cotton soil. Niger J Technol 32:507–521

    Google Scholar 

  172. Aparna RP, Bindu J (2023) Utilization of waste materials as a substitute for the sand drain in clayey soil. Int J Geo Eng 14:2. https://doi.org/10.1186/s40703-022-00180-9

    Article  Google Scholar 

  173. Phanikumar BR, Nagaraju TV (2018) Effect of fly ash and rice husk ash on index and engineering properties of expansive clays. Geotech Geol Eng 36:3425–3436. https://doi.org/10.1007/s10706-018-0544-5

    Article  Google Scholar 

  174. Noohu NK, Chandrakaran S (2015) Influence of rice husk ash on geotechnical properties of soft clay. Asian J Eng Technol 3:350–355

    Google Scholar 

  175. Ashango AA, Patra NR (2016) Behavior of expansive soil treated with steel slag, rice husk ash, and lime. J Mater Civ Eng 28:06016008. https://doi.org/10.1061/(ASCE)mt.1943-5533.0001547

    Article  Google Scholar 

  176. Pushpakumara BHJ, Mendis WSW (2022) Suitability of rice husk ash (RHA) with lime as a soil stabilizer in geotechnical applications. Int J Geo Eng 13:4. https://doi.org/10.1186/s40703-021-00169-w

    Article  Google Scholar 

  177. Kumar A, Gupta D (2016) Behavior of cement-stabilized fiber-reinforced pond ash, rice husk ash-soil mixtures. Geotext Geomembr 44:466–474. https://doi.org/10.1016/j.geotexmem.2015.07.010

    Article  Google Scholar 

  178. Ghorbani A, Salimzadehshooiili M, Medzvieckas J, Kliukas R (2018) Strength characteristics of cement-rice husk ash stabilized sand-clay mixture reinforced with polypropylene fibers. Balt J Road Bridg Eng 13:447–474. https://doi.org/10.7250/bjrbe.2018-13.428

    Article  Google Scholar 

  179. Rao DK, Ganja V, Pranav PRT (2012) A laboratory study of cyclic plate load test on lime and rice husk ash treated marine clay subgrade flexible pavements. Int J Mod Eng Res 2:4465–4469

    Google Scholar 

  180. Yusuf MO (2023) Bond characterization in cementitious material binders using Fourier-transform infrared spectroscopy. Appl Sci 13:3353. https://doi.org/10.3390/app13053353

    Article  CAS  Google Scholar 

  181. Jaiswal M, Lal B (2016) Impact of rice husk ash on soil stability (including micro level investigation). Indian J Sci Technol 9:1–7. https://doi.org/10.17485/ijst/2016/v9i30/99189

    Article  CAS  Google Scholar 

  182. Kolar P, Jin H (2019) Baseline characterization data for raw rice husk. Data Br 25:104219. https://doi.org/10.1016/j.dib.2019.104219

    Article  Google Scholar 

  183. Bakdash RS, Aljundi IH, Basheer C, Abdulazeez I (2020) Rice husk derived aminated silica for the efficient adsorption of different gases. Sci Rep 10:1–12. https://doi.org/10.1038/s41598-020-76460-0

    Article  CAS  Google Scholar 

  184. Huang Z, Hu L, Dai J (2020) Effects of ageing on the surface characteristics and Cu(ii) adsorption behaviour of rice husk biochar in soil. Open Chem 18:1421–1432. https://doi.org/10.1515/chem-2020-0164

    Article  CAS  Google Scholar 

  185. Severo FF, da Silva LS, Moscôso JSC, Sarfaraz Q, Rodrigues Júnior LF, Lopes AF et al (2020) Chemical and physical characterization of rice husk biochar and ashes and their iron adsorption capacity. SN Appl Sci 2:1286. https://doi.org/10.1007/s42452-020-3088-2

    Article  CAS  Google Scholar 

  186. Chen CT, Chang CH (2019) Mechanical properties of geopolymer produced by rice husk ash calcined at low temperature. Acad J Civil Eng 37(2):97–101

    Google Scholar 

Download references

Funding

This research is supported by the Department of Science and Technology (DST), International Bilateral Cooperation Division, Govt. of India through an Indo-Japan DST-JSPS bilateral grant (Project ID: DST/INT/JSPS/P-357/2022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anasua Guharay.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abhishek, A., Guharay, A., Raghuram, A.S.S. et al. A State-of-the-Art Review on Suitability of Rice Husk Ash as a Sustainable Additive for Geotechnical Applications. Indian Geotech J (2024). https://doi.org/10.1007/s40098-024-00905-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40098-024-00905-w

Keywords

Navigation