Skip to main content
Log in

A Review on the Biomaterials Fabricated for Cardiac Tissue Engineering Using Decellularized Extracellular Matrix

  • Review
  • Published:
Regenerative Engineering and Translational Medicine Aims and scope Submit manuscript

Abstract

Biomaterials synthesized using a variety of polymers are extensively used in tissue engineering for the repair and regeneration of tissues, cells, and organs. Extracellular matrix is one of the ground substances that serves as an excellent choice of natural biomaterial obtained by different methods of decellularization. The decellularized tissue or organ serves as an apt material for fabrication as a scaffold since it maintains the biological components essential for function of the specific region. This acellular matrix has been used in combination with polymers for the fabrication of different types of scaffolds. It has also been used as a bioink to print the required material of desired specifications providing a three-dimensional niche for cellular growth. To enhance the efficiency of the scaffolds in cardiac repair, conductive polymers have been used that showed excellent stimuli-responsive healing. An overview of the scaffold produced from heart extracellular matrix, its application as a scaffold, nanomaterial-based scaffold, and conductive polymers used are summarized in this review.

Lay summary

Extracellular matrix (ECM) is an integral part of every tissue which is comprised of complex molecules. This ECM plays a vital role in maintaining the structural integrity, function and cellular communication. This ECM is cell-specific which contributes to the fate and function of the tissue, which makes it the right choice of substrate for use as a scaffold in tissue repair and regeneration. But in order to avoid immune rejection when used in therapy, it has to be devoid of antigenic agents, which is done by decellularising the ECM (dECM). This dECM obtained from cardiac tissue/cells is then suitable for use as a biomaterial in fabricating different forms of scaffolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Li Y, Cao G, Jing W, Liu J, Liu M. Global trends and regional differences in incidence and mortality of cardiovascular disease, 1990–2019: findings from 2019 global burden of disease study. Eur J Prev Cardiol. 2023;30:276–86.

    Article  PubMed  Google Scholar 

  2. Onoe H, Okitsu T, Itou A, Kato-Negishi M, Gojo R, Kiriya D, et al. Metre-long cell-laden microfibres exhibit tissue morphologies and functions. Nat Mater. 2013;12:584–90.

    Article  CAS  PubMed  Google Scholar 

  3. Shiny PJ, Vimala Devi M, Felciya SJG, Ramanathan G, Fardim P, Sivagnanam UT. In vitro and in vivo evaluation of poly-3-hydroxybutyric acid-sodium alginate as a core-shell nanofibrous matrix with arginine and bacitracin-nanoclay complex for dermal reconstruction of excision wound. Int J Biol Macromol. 2021;168:46–58.

    Article  CAS  PubMed  Google Scholar 

  4. Vimala Devi M, Liji Sobhana SS, Shiny PJ, Ramanathan G, Grace Felciya SJ, Poornima V, et al. Durable nanofibrous matrices augmented with hydrotalcite-like compounds for cutaneous regeneration of burn wounds. Appl Clay Sci. 2020;187:105476.

    Article  CAS  Google Scholar 

  5. Santschi M, Vernengo A, Eglin D, D’Este M, Wuertz-Kozak K. Decellularized matrix as a building block in bioprinting and electrospinning. Curr Opin Biomed Eng. 2019;10:116–22.

    Article  Google Scholar 

  6. Derrick CJ, Noël ES. The ECM as a driver of heart development and repair. Dev Camb Engl. 2021;148:191320.

    Google Scholar 

  7. Skardal A, Zhang J, Prestwich GD. Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates. Biomaterials. 2010;31:6173–81.

    Article  CAS  PubMed  Google Scholar 

  8. Skardal A, Mack D, Kapetanovic E, Atala A, Jackson JD, Yoo J, et al. Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds. Stem Cells Transl Med. 2012;1:792–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Saberi A, Jabbari F, Zarrintaj P, Saeb MR, Mozafari M. Electrically conductive materials: opportunities and challenges in tissue engineering. Biomolecules. 2019;9:448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Taber LA. Mechanical aspects of cardiac development. Prog Biophys Mol Biol. 1998;69:237–55.

    Article  CAS  PubMed  Google Scholar 

  11. Chan BP, Leong KW. Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur Spine J. 2008;17:467–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Teodori L, Costa A, Marzio R, Perniconi B, Coletti D, Adamo S, Gupta B. Tarnok A Native extracellular matrix: a new scaffolding platform for repair of damaged muscle. Front physiol. 2014;5:87610. https://doi.org/10.3389/fphys.2014.00218.

    Article  Google Scholar 

  13. Zhang X, Chen X, Hong H, Hu R, Liu J, Liu C. Decellularized extracellular matrix scaffolds: recent trends and emerging strategies in tissue engineering. Bioact Mater. 2022;10:15–31.

    CAS  PubMed  Google Scholar 

  14. Zambon JP, Ko IK, Abolbashari M, Huling J, Clouse C, Kim TH, et al. Comparative analysis of two porcine kidney decellularization methods for maintenance of functional vascular architectures. Acta Biomater. 2018;75:226–34.

    Article  CAS  PubMed  Google Scholar 

  15. Seo Y, Jung Y, Kim SH. Decellularized heart ECM hydrogel using supercritical carbon dioxide for improved angiogenesis. Acta Biomater. 2018;67:270–81.

    Article  CAS  PubMed  Google Scholar 

  16. Grant R, Hallett J, Forbes S, Hay D, Callanan A. Blended electrospinning with human liver extracellular matrix for engineering new hepatic microenvironments. Sci Rep. 2019;9:6293.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Du P, Suhaeri M, Ha SS, Oh SJ, Kim S-H, Park K. Human lung fibroblast-derived matrix facilitates vascular morphogenesis in 3D environment and enhances skin wound healing. Acta Biomater. 2017;54:333–44.

    Article  CAS  PubMed  Google Scholar 

  18. Antoon R, Yeger H, Loai Y, Islam S, Farhat WA. Impact of bladder-derived acellular matrix, growth factors, and extracellular matrix constituents on the survival and multipotency of marrow-derived mesenchymal stem cells. J Biomed Mater Res A. 2012;100A:72–83.

    Article  CAS  Google Scholar 

  19. Hou C, Zheng J, Li Z, Qi X, Tian Y, Zhang M, et al. Printing 3D vagina tissue analogues with vagina decellularized extracellular matrix bioink. Int J Biol Macromol. 2021;180:177–86.

    Article  CAS  PubMed  Google Scholar 

  20. Duflo S, Thibeault SL, Li W, Shu XZ, Prestwich GD. Vocal fold tissue repair in vivo using a synthetic extracellular matrix. Tissue Eng. 2006;12:2171–80.

    Article  CAS  PubMed  Google Scholar 

  21. Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Prog Polym Sci. 2007;32:762–98.

    Article  CAS  Google Scholar 

  22. Bhardwaj N, Kundu SC. Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv. 2010;28:325–47.

    Article  CAS  PubMed  Google Scholar 

  23. Zhu M, Li W, Dong X, Yuan X, Midgley AC, Chang H, et al. In vivo engineered extracellular matrix scaffolds with instructive niches for oriented tissue regeneration. Nat Commun. 2019;10:4620.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ott HC, Matthiesen TS, Goh S-K, Black LD, Kren SM, Netoff TI, et al. Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med. 2008;14:213–21.

    Article  CAS  PubMed  Google Scholar 

  25. Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011;32:3233–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rabbani M, Zakian N, Alimoradi N. Contribution of physical methods in decellularization of animal tissues. J Med Signals Sens. 2021;11:1.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lu T-Y, Lin B, Kim J, Sullivan M, Tobita K, Salama G, et al. Repopulation of decellularized mouse heart with human induced pluripotent stem cell-derived cardiovascular progenitor cells. Nat Commun. 2013;4:2307.

    Article  PubMed  Google Scholar 

  28. Jang J, Kim TG, Kim BS, Kim S-W, Kwon S-M, Cho D-W. Tailoring mechanical properties of decellularized extracellular matrix bioink by vitamin B2-induced photo-crosslinking. Acta Biomater. 2016;33:88–95.

    Article  CAS  PubMed  Google Scholar 

  29. Pati F, Jang J, Ha D-H, Won Kim S, Rhie J-W, Shim J-H, et al. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun. 2014;5:3935.

    Article  CAS  PubMed  Google Scholar 

  30. Turan Sorhun D, Kuşoğlu A, Öztürk E. Developing bovine brain-derived extracellular matrix hydrogels: a screen of decellularization methods for their impact on biochemical and mechanical properties. ACS Omega. 2023;8:36933–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Oberwallner B, Brodarac A, Choi Y-H, Saric T, Anić P, Morawietz L, et al. Preparation of cardiac extracellular matrix scaffolds by decellularization of human myocardium. J Biomed Mater Res A. 2014;102:3263–72.

    Article  PubMed  Google Scholar 

  32. Fitzpatrick LE, McDevitt TC. Cell-derived matrices for tissue engineering and regenerative medicine applications. Biomater Sci. 2015;3:12–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hoshiba T, Chen G, Endo C, Maruyama H, Wakui M, Nemoto E, et al. Decellularized extracellular matrix as an in vitro model to study the comprehensive roles of the ECM in stem cell differentiation. Stem Cells Int. 2016;2016:6397820.

    Article  PubMed  Google Scholar 

  34. Sart S, Yan Y, Li Y, Lochner E, Zeng C, Ma T, et al. Crosslinking of extracellular matrix scaffolds derived from pluripotent stem cell aggregates modulates neural differentiation. Acta Biomater. 2016;30:222–32.

    Article  CAS  PubMed  Google Scholar 

  35. Wilks BT, Evans EB, Nakhla MN, Morgan JR. Directing fibroblast self-assembly to fabricate highly-aligned, collagen-rich matrices. Acta Biomater. 2018;81:70–9.

    Article  CAS  PubMed  Google Scholar 

  36. Nellinger S, Mrsic I, Keller S, Heine S, Southan A, Bach M, et al. Cell-derived and enzyme-based decellularized extracellular matrix exhibit compositional and structural differences that are relevant for its use as a biomaterial. Biotechnol Bioeng. 2022;119:1142–56.

    Article  CAS  PubMed  Google Scholar 

  37. Sharma D, Ferguson M, Zhao F. A step-by-step protocol for generating human fibroblast cell-derived completely biological extracellular matrix scaffolds. Methods Cell Biol. 2020;156:3–13.

    Article  CAS  PubMed  Google Scholar 

  38. Maia FR, Reis RL, Oliveira JM. Decellularized hASCs-derived matrices as biomaterials for 3D in vitro approaches. Methods Cell Biol. 2020;156:45–58.

    Article  CAS  PubMed  Google Scholar 

  39. Chen T-A, Sharma D, Jia W, Ha D, Man K, Zhang J, et al. Detergent-based decellularization for anisotropic cardiac-specific extracellular matrix scaffold generation. Biomim Basel Switz. 2023;8:551.

    CAS  Google Scholar 

  40. Kumar A, Nune KC, Misra RDK. Biological functionality and mechanistic contribution of extracellular matrix-ornamented three dimensional Ti-6Al-4V mesh scaffolds. J Biomed Mater Res A. 2016;104:2751–63.

    Article  CAS  PubMed  Google Scholar 

  41. Hochman-Mendez C, Pereira de Campos DB, Pinto RS, Mendes BJdaS, Rocha GM, Monnerat G, et al. Tissue-engineered human embryonic stem cell-containing cardiac patches: evaluating recellularization of decellularized matrix. J Tissue Eng. 2020;11:204173142092148.

    Article  Google Scholar 

  42. Guler S, Aslan B, Hosseinian P, Aydin HM. Supercritical carbon dioxide-assisted decellularization of aorta and cornea. Tissue Eng Part C Methods. 2017;23:540–7.

    Article  CAS  PubMed  Google Scholar 

  43. Jang J, Park H-J, Kim S-W, Kim H, Park JY, Na SJ, et al. 3D printed complex tissue construct using stem cell-laden decellularized extracellular matrix bioinks for cardiac repair. Biomaterials. 2017;112:264–74.

    Article  CAS  PubMed  Google Scholar 

  44. Shin YJ, Shafranek RT, Tsui JH, Walcott J, Nelson A, Kim D-H. 3D bioprinting of mechanically tuned bioinks derived from cardiac decellularized extracellular matrix. Acta Biomater. 2021;119:75–88.

    Article  CAS  PubMed  Google Scholar 

  45. Das S, Kim S-W, Choi Y-J, Lee S, Lee S-H, Kong J-S, et al. Decellularized extracellular matrix bioinks and the external stimuli to enhance cardiac tissue development in vitro. Acta Biomater. 2019;95:188–200.

    Article  CAS  PubMed  Google Scholar 

  46. Ross RS, Borg TK. Integrins and the myocardium. Circ Res. 2001;88:1112–9.

    Article  CAS  PubMed  Google Scholar 

  47. Astrof S, Hynes RO. Fibronectins in vascular morphogenesis. Angiogenesis. 2009;12:165–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Corda S, Samuel JL, Rappaport L. Extracellular matrix and growth factors during heart growth. Heart Fail Rev. 2000;5:119–30.

    Article  CAS  PubMed  Google Scholar 

  49. Graham HK, Horn M, Trafford AW. Extracellular matrix profiles in the progression to heart failure. European Young Physiologists Symposium Keynote Lecture-Bratislava 2007. Acta Physiol Oxf Engl. 2008;194:3–21.

    Article  CAS  Google Scholar 

  50. Katsuragi N, Morishita R, Nakamura N, Ochiai T, Taniyama Y, Hasegawa Y, et al. Periostin as a novel factor responsible for ventricular dilation. Circulation. 2004;110:1806–13.

    Article  CAS  PubMed  Google Scholar 

  51. Lindsey ML, Goshorn DK, Squires CE, Escobar GP, Hendrick JW, Mingoia JT, et al. Age-dependent changes in myocardial matrix metalloproteinase/tissue inhibitor of metalloproteinase profiles and fibroblast function. Cardiovasc Res. 2005;66:410–9.

    Article  CAS  PubMed  Google Scholar 

  52. Maquart FX, Bellon G, Pasco S, Monboisse JC. Matrikines in the regulation of extracellular matrix degradation. Biochimie. 2005;87:353–60.

    Article  CAS  PubMed  Google Scholar 

  53. Hirota H, Izumi M, Hamaguchi T, Sugiyama S, Murakami E, Kunisada K, et al. Circulating interleukin-6 family cytokines and their receptors in patients with congestive heart failure. Heart Vessels. 2004;19:237–41.

    Article  PubMed  Google Scholar 

  54. Funk RHW, Monsees T, Ozkucur N. Electromagnetic effects - from cell biology to medicine. Prog Histochem Cytochem. 2009;43:177–264.

    Article  PubMed  Google Scholar 

  55. Clayton RH, Bernus O, Cherry EM, Dierckx H, Fenton FH, Mirabella L, et al. Models of cardiac tissue electrophysiology: progress, challenges and open questions. Prog Biophys Mol Biol. 2011;104:22–48.

    Article  CAS  PubMed  Google Scholar 

  56. Portillo Esquivel LE, Zhang B. Application of cell, tissue, and biomaterial delivery in cardiac regenerative therapy. ACS Biomater Sci Eng. 2021;7:1000–21.

    Article  CAS  PubMed  Google Scholar 

  57. Chakraborty P, Oved H, Bychenko D, Yao Y, Tang Y, Zilberzwige-Tal S, et al. Nanoengineered peptide-based antimicrobial conductive supramolecular biomaterial for cardiac tissue engineering. Adv Mater. 2021;33:2008715.

    Article  CAS  Google Scholar 

  58. Ahadian S, Davenport Huyer L, Estili M, Yee B, Smith N, Xu Z, et al. Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering. Acta Biomater. 2017;52:81–91.

    Article  CAS  PubMed  Google Scholar 

  59. Kharaziha M, Shin SR, Nikkhah M, Topkaya SN, Masoumi N, Annabi N, et al. Tough and flexible CNT-polymeric hybrid scaffolds for engineering cardiac constructs. Biomaterials. 2014;35:7346–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Shokraei N, Asadpour S, Shokraei S, Nasrollahzadeh Sabet M, Faridi-Majidi R, Ghanbari H. Development of electrically conductive hybrid nanofibers based on CNT-polyurethane nanocomposite for cardiac tissue engineering. Microsc Res Tech. 2019;82:1316–25.

    Article  CAS  PubMed  Google Scholar 

  61. Ganji Y, Li Q, Quabius ES, Böttner M, Selhuber-Unkel C, Kasra M. Cardiomyocyte behavior on biodegradable polyurethane/gold nanocomposite scaffolds under electrical stimulation. Mater Sci Eng C. 2016;59:10–8.

    Article  CAS  Google Scholar 

  62. Feiner R, Fleischer S, Shapira A, Kalish O, Dvir T. Multifunctional degradable electronic scaffolds for cardiac tissue engineering. J Control Release. 2018;281:189–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Nishizawa M, Nozaki H, Kaji H, Kitazume T, Kobayashi N, Ishibashi T, et al. Electrodeposition of anchored polypyrrole film on microelectrodes and stimulation of cultured cardiac myocytes. Biomaterials. 2007;28:1480–5.

    Article  CAS  PubMed  Google Scholar 

  64. Cui Z, Ni NC, Wu J, Du G-Q, He S, Yau TM, et al. Polypyrrole-chitosan conductive biomaterial synchronizes cardiomyocyte contraction and improves myocardial electrical impulse propagation. Theranostics. 2018;8:2752–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Roshanbinfar K, Vogt L, Greber B, Diecke S, Boccaccini AR, Scheibel T, et al. Electroconductive biohybrid hydrogel for enhanced maturation and beating properties of engineered cardiac tissues. Adv Funct Mater. 2018;28:1803951.

    Article  Google Scholar 

  66. Hsiao C-W, Bai M-Y, Chang Y, Chung M-F, Lee T-Y, Wu C-T, et al. Electrical coupling of isolated cardiomyocyte clusters grown on aligned conductive nanofibrous meshes for their synchronized beating. Biomaterials. 2013;34:1063–72.

    Article  CAS  PubMed  Google Scholar 

  67. Bidez PR, Li S, Macdiarmid AG, Venancio EC, Wei Y, Lelkes PI. Polyaniline, an electroactive polymer, supports adhesion and proliferation of cardiac myoblasts. J Biomater Sci Polym Ed. 2006;17:199–212.

    Article  CAS  PubMed  Google Scholar 

  68. Scott L, Elídóttir K, Jeevaratnam K, Jurewicz I, Lewis R. Electrical stimulation through conductive scaffolds for cardiomyocyte tissue engineering: systematic review and narrative synthesis. Ann N Y Acad Sci. 2022;1515:105–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Shin SR, Shin C, Memic A, Shadmehr S, Miscuglio M, Jung HY, et al. Aligned carbon nanotube–based flexible gel substrates for engineering biohybrid tissue actuators. Adv Funct Mater. 2015;25:4486–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhang F, Cheng H, Qu K, Qian X, Lin Y, Zhang Y, et al. Continuous contractile force and electrical signal recordings of 3D cardiac tissue utilizing conductive hydrogel pillars on a chip. Mater Today Bio. 2023;20:100626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Traverse JH, Henry TD, Dib N, Patel AN, Pepine C, Schaer GL, et al. First-in-man study of a cardiac extracellular matrix hydrogel in early and late myocardial infarction patients. JACC Basic Transl Sci. 2019;4:659–69.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Kasravi M, Ahmadi A, Babajani A, Mazloomnejad R, Hatamnejad MR, Shariatzadeh S, et al. Immunogenicity of decellularized extracellular matrix scaffolds: a bottleneck in tissue engineering and regenerative medicine. Biomater Res. 2023;27:10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bonvini SJ. Cause or Effect? Stretching to understand the inflammatory role of elastin fiber breakdown in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol. 2020;63:558–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhou J-S, Li Z-Y, Xu X-C, Zhao Y, Wang Y, Chen H-P, et al. Cigarette smoke-initiated autoimmunity facilitates sensitisation to elastin-induced COPD-like pathologies in mice. Eur Respir J. 2020;56:2000404.

    Article  CAS  PubMed  Google Scholar 

  75. Wight TN, Kang I, Evanko SP, Harten IA, Chang MY, Pearce OMT, et al. Versican—a critical extracellular matrix regulator of immunity and inflammation. Front Immunol. 2020;11:512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. McQuitty CE, Williams R, Chokshi S, Urbani L. Immunomodulatory role of the extracellular matrix within the liver disease microenvironment. Front Immunol. 2020;11:574276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Fertala A. Three decades of research on recombinant collagens: reinventing the wheel or developing new biomedical products? Bioengineering. 2020;7:155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Tan YH, Helms HR, Nakayama KH. Decellularization strategies for regenerating cardiac and skeletal muscle tissues. Front Bioeng Biotechnol. 2022;10:831300.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author SPJ thanks Department of Biotechnology for financial support in the form of a Research Associateship (DBT-RA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiny Punalur John.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

John, S.P., Nagarajan, R. A Review on the Biomaterials Fabricated for Cardiac Tissue Engineering Using Decellularized Extracellular Matrix. Regen. Eng. Transl. Med. (2024). https://doi.org/10.1007/s40883-024-00341-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40883-024-00341-5

Keywords

Navigation