Skip to main content

Advertisement

Log in

Biomaterials Comprising Implantable and Dermal Drug Delivery Targeting Brain in Management of Alzheimer’s Disease: A Review

  • Review
  • Published:
Regenerative Engineering and Translational Medicine Aims and scope Submit manuscript

Abstract

Purpose

Alzheimer’s disease (AD) is regarded as the most common neurological condition in terms of cognition. The disease progresses gradually, begin with a slight memory loss and maybe lead to the lack of communication as well as environmental awareness. Like the majority of neurological conditions, Alzheimer’s disease has no proven effective drug and treatment of reversal. Moreover, this disorder requires a long-term treatment and a progressive supply of the induced drug.

Methods

The review investigated the use of biomaterial in the fabrication of implantable and dermal drug delivery targeting the brain in the management of AD.

Results

An ideal drug-delivering system for the management of AD requires a transitional approach using advanced technology. The ability of implantable drug delivery systems to release drugs continuously and effectively over an extended period of time, and in the needed dosage, is a topic of extensive research. Several types of implantable drug delivery systems including the usage of nanotechnologies have been widely implicated in the treatment of neurological aliments. Recently, patient-centric approach-based fabrication of three-dimensional printed implants and microneedle have been investigated that demonstrated enhancement in permeability with prolonged release of medication.

Conclusion

The current review offers a thorough grasp of the implantable drug delivery systems especially implant film and microneedle, their fabrication strategies, and their mechanisms, with a focus in the management of AD.

Lay Summary

AD is a neurodegenerative condition that affects memory, reasoning, and the capacity to carry out everyday duties. Modern therapeutic interventions have the potential to improve life expectancy but fall short of complete curing AD. Polymeric biomaterials fabricated implants and dermal microneedles that were applied directly overhead bought revolution in delivering drug and management of AD.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The dataset used in this review can be available from corresponding authors on request.

Abbreviations

AD:

Alzheimer’s disease

BBB:

Blood-brain barrier

CNS:

Central nervous system

EOAD:

Early-onset Alzheimer’s disease

LOAD:

Late-onset Alzheimer’s disease

MCI:

Mild cognitive impairment

ADAD:

Autosomal dominant Alzheimer’s disease

CSF:

Cerebrospinal fluid

ISF:

Cerebral interstitial fluid

BuChE:

Butylrylcholinersterase

AChE:

Acetylcholinersterase

BDNF:

Brain-derived neurotropic factor

APOE:

Apolipoprotein E

ODTs:

Orally disintegrating tablets

DPH:

Donepezil hydrochloride

NPs:

Nanoparticles

FDA:

Food and Drug Administration

HPLC:

High-performance liquid chromatography

3D:

Three dimensional

UV:

Ultraviolet

kDa:

Kilodalton

USFDA:

United States Food and Drug Administration

EEG:

Electroencephalography

DDS:

Drug delivery system

SLNs:

Solid lipid nanoparticles

References

  1. Cipriani G, Dolciotti C, Picchi L, Bonuccelli U. Alzheimer and his disease: a brief history. Neurol Sci. 2011;32:275–9.

    Article  PubMed  Google Scholar 

  2. Soria Lopez JA, González HM, Léger GC. Chapter 13 - Alzheimer’s disease. In: Dekosky ST, Asthana S, editors. Handbook of clinical neurology, vol 167. Elsevier; 2019. p. 231–55. https://doi.org/10.1016/B978-0-12-804766-8.00013-3.

    Chapter  Google Scholar 

  3. Fonseca LC, Lopes JA, Vieira J, Viegas C, Oliveira CS, Hartmann RP, Fonte P. Intranasal drug delivery for treatment of Alzheimer’s disease. Drug Deliv Transl Res. 2021;11(2):411–25. https://doi.org/10.1007/s13346-021-00940-7.

    Article  PubMed  Google Scholar 

  4. Nichols E, Szoeke CEI, Vollset SE, Abbasi N, Abd-Allah F, Abdela J, Aichour MTE, Akinyemi RO, Alahdab F, Asgedom SW, Awasthi A, Barker-Collo SL, Baune BT, Béjot Y, Belachew AB, Bennett DA, Biadgo B, Bijani A, Bin Sayeed MS, Brayne C, Carpenter DO, Carvalho F, Catalá-López F, Cerin E, Choi J-YJ, Dang AK, Degefa MG, Djalalinia S, Dubey M, Duken EE, Edvardsson D, Endres M, Eskandarieh S, Faro A, Farzadfar F, Fereshtehnejad S-M, Fernandes E, Filip I, Fischer F, Gebre AK, Geremew D, Ghasemi-Kasman M, Gnedovskaya EV, Gupta R, Hachinski V, Hagos TB, Hamidi S, Hankey GJ, Haro JM, Hay SI, Irvani SSN, Jha RP, Jonas JB, Kalani R, Karch A, Kasaeian A, Khader YS, Khalil IA, Khan EA, Khanna T, Khoja TAM, Khubchandani J, Kisa A, Kissimova-Skarbek K, Kivimäki M, Koyanagi A, Krohn KJ, Logroscino G, Lorkowski S, Majdan M, Malekzadeh R, März W, Massano J, Mengistu G, Meretoja A, Mohammadi M, Mohammadi-Khanaposhtani M, Mokdad AH, Mondello S, Moradi G, Nagel G, Naghavi M, Naik G, Nguyen LH, Nguyen TH, Nirayo YL, Nixon MR, Ofori-Asenso R, Ogbo FA, Olagunju AT, Owolabi MO, Panda-Jonas S, Passos VMdA, Pereira DM, Pinilla-Monsalve GD, Piradov MA, Pond CD, Poustchi H, Qorbani M, Radfar A, Reiner RC Jr, Robinson SR, Roshandel G, Rostami A, Russ TC, Sachdev PS, Safari H, Safiri S, Sahathevan R, Salimi Y, Satpathy M, Sawhney M, Saylan M, Sepanlou SG, Shafieesabet A, Shaikh MA, Sahraian MA, Shigematsu M, Shiri R, Shiue I, Silva JP, Smith M, Sobhani S, Stein DJ, Tabarés-Seisdedos R, Tovani-Palone MR, Tran BX, Tran TT, Tsegay AT, Ullah I, Venketasubramanian N, Vlassov V, Wang Y-P, Weiss J, Westerman R, Wijeratne T, Wyper GMA, Yano Y, Yimer EM, Yonemoto N, Yousefifard M, Zaidi Z, Zare Z, Vos T, Feigin VL, Murray CJL. Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18(1):88–106. https://doi.org/10.1016/S1474-4422(18)30403-4.

    Article  Google Scholar 

  5. Schachter AS, Davis KL. Alzheimer’s disease. Dialogues in clinical neuroscience. 2000;2(2):91–100. https://doi.org/10.31887/DCNS.2000.2.2/asschachter.

  6. Pardridge WM. Treatment of Alzheimer’s disease and blood-brain barrier drug delivery. Pharmaceuticals (Basel, Switzerland). 2020;13 (11). https://doi.org/10.3390/ph13110394.

  7. Barenholz Y. Liposome application: problems and prospects. Curr Opin Colloid Interface Sci. 2001;6(1):66–77. https://doi.org/10.1016/S1359-0294(00)00090-X.

    Article  CAS  Google Scholar 

  8. Akhtar A, Andleeb A, Waris TS, Bazzar M, Moradi AR, Awan NR, Yar M. Neurodegenerative diseases and effective drug delivery: a review of challenges and novel therapeutics. J Control Release. 2021;330:1152–67. https://doi.org/10.1016/j.jconrel.2020.11.021.

    Article  CAS  PubMed  Google Scholar 

  9. Faiyaz M, Ganayee MA, Akhtar S, Krishnan S, Flora B, Dogra D, Jha NK, Chellappan DK, Negi P, Dua K, Kesari KK, Gupta PK. Nanomaterials in Alzheimer’s disease treatment: a comprehensive review. FBL. 2021;26(10):851–65. https://doi.org/10.52586/4992.

    Article  CAS  PubMed  Google Scholar 

  10. Agrawal M, Prathyusha E, Ahmed H, Dubey SK, Kesharwani P, Singhvi G, Naidu VGM, Alexander A. Biomaterials in treatment of Alzheimer’s disease. Neurochem Int. 2021;145:105008. https://doi.org/10.1016/j.neuint.2021.105008.

    Article  CAS  PubMed  Google Scholar 

  11. Thoe ES, Fauzi A, Tang YQ, Chamyuang S, Chia AYY. A review on advances of treatment modalities for Alzheimer’s disease. Life Sci. 2021;276:119129.

    Article  Google Scholar 

  12. Uchida Y, Kan H, Sakurai K, Oishi K, Matsukawa N. Contributions of blood–brain barrier imaging to neurovascular unit pathophysiology of Alzheimer’s disease and related dementias. Front Aging Neurosci. 2023;15:1111448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Horie K, Salvadó G, Barthélemy NR, Janelidze S, Li Y, He Y, Saef B, Chen CD, Jiang H, Strandberg O. CSF MTBR-tau243 is a specific biomarker of tau tangle pathology in Alzheimer’s disease. Nat Med. 2023;29(8):1954–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Parikh NH, Parikh PK, Rao HJ, Shah K, Dave BP, Prajapati BG (2024) Current trends and updates in the treatment of Alzheimer’s disease. In: Alzheimer’s disease and advanced drug delivery strategies. Elsevier, 373–390

    Chapter  Google Scholar 

  15. Spotorno N, Strandberg O, Vis G, Stomrud E, Nilsson M, Hansson O. Measures of cortical microstructure are linked to amyloid pathology in Alzheimer’s disease. Brain. 2023;146(4):1602–14.

    Article  PubMed  Google Scholar 

  16. Prajapati V, Shinde S, Shrivastav P, Prajapati BG. New biologicals and biomaterials in the therapy of Alzheimer’s disease. In: Alzheimer’s disease and advanced drug delivery strategies. Elsevier; 2024. p. 93–114.

    Chapter  Google Scholar 

  17. Khodakiya A, Chaudhary S, Chaudhary A, Prajapati BG. Novel therapeutic approaches for targeting Alzheimer’s disease. In: Alzheimer’s disease and advanced drug delivery strategies. Elsevier; 2024. p. 297–318.

    Chapter  Google Scholar 

  18. Gawade A, Polshettiwar S, Hingalajia H, Prajapati BG, Singh A. Pharmacokinetics and pharmacodynamics of various novel formulations targeting Alzheimer’s disease. In: Alzheimer’s disease and advanced drug delivery strategies. Elsevier. 2024;391–402.

    Chapter  Google Scholar 

  19. Khezri MR, Yousefi K, Esmaeili A, Ghasemnejad-Berenji M. The role of ERK1/2 pathway in the pathophysiology of Alzheimer’s disease: an overview and update on new developments. Cell Mol Neurobiol. 2023;43(1):177–91.

    Article  CAS  PubMed  Google Scholar 

  20. Chorawala MR, Shah AC, Pandya AJ, Kothari NR, Prajapati BG. Symptoms and conventional treatments of Alzheimer’s disease. Alzheimer’s disease and advanced drug delivery strategies. 2024;213–234.

  21. Griffiths J, Grant SG. Synapse pathology in Alzheimer’s disease. Elsevier; 2023. p. 13–23.

    Google Scholar 

  22. Sirin S, Nigdelioglu Dolanbay S, Aslim B. The relationship of early- and late-onset Alzheimer’s disease genes with COVID-19. J Neural Transm (Vienna). 2022;129(7):847–59. https://doi.org/10.1007/s00702-022-02499-0.

    Article  CAS  PubMed  Google Scholar 

  23. Sirkis DW, Bonham LW, Johnson TP, La Joie R. Yokoyama JSJMP. Dissecting the clinical heterogeneity of early-onset Alzheimer’s disease. 2022;27:2674–88.

    CAS  Google Scholar 

  24. Guzmán-Vélez E, Díez I, Schoemaker D, Pardilla-Delgado E, Vila-Castelar C, Fox-Fuller JT, Baena A, Sperling RA, Johnson KA, Lopera F, Sepulcre J, Quiroz YTJPotNAoSotUSoA. Amyloid-β and tau pathologies relate to distinctive brain dysconnectomics in preclinical autosomal-dominant Alzheimer’s disease. 2021;119.

  25. Goyanes A, Fina F, Martorana A, Sedough D, Gaisford S, Basit AW. Development of modified release 3D printed tablets (printlets) with pharmaceutical excipients using additive manufacturing. Int J Pharm. 2017;527(1):21–30. https://doi.org/10.1016/j.ijpharm.2017.05.021.

    Article  CAS  PubMed  Google Scholar 

  26. Wong KH, Riaz MK, Xie Y, Zhang X, Liu Q, Chen H, Bian Z, Chen X, Lu A, Yang Z. Review of current strategies for delivering Alzheimer’s disease drugs across the blood-brain barrier. Int J Mol Sci. 2019;20 (2). https://doi.org/10.3390/ijms20020381.

  27. Poudel P, Park S. Recent advances in the treatment of Alzheimer’s disease using nanoparticle-based drug delivery systems. Pharmaceutics. 2022;14 (4). https://doi.org/10.3390/pharmaceutics14040835.

  28. Bonilla C, Zurita M. Cell-based therapies for traumatic brain injury: therapeutic treatments and clinical trials. Biomedicines. 2021;9(6). https://doi.org/10.3390/biomedicines9060669.

  29. Kassem LM, Ibrahim NA, Farhana SA. Nanoparticle therapy is a promising approach in the management and prevention of many diseases: does it help in curing Alzheimer disease? Journal of Nanotechnology. 2020;2020:8147080. https://doi.org/10.1155/2020/8147080.

    Article  CAS  Google Scholar 

  30. Wilcock GK, Lilienfeld S, Gaens E. Efficacy and safety of galantamine in patients with mild to moderate Alzheimer’s disease: multicentre randomised controlled trial. BMJ. 2000;321(7274):1445. https://doi.org/10.1136/bmj.321.7274.1445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Birks JS, Grimley Evans J.  Rivastigmine for Alzheimer’s disease. Cochrane Database Syst Rev. 2015;(4). https://doi.org/10.1002/14651858.CD001191.pub3.

  32. Tariot PN, Cummings JL, Katz IR, Mintzer J, Perdomo CA, Schwam EM, Whalen E. A randomized, double-blind, placebo-controlled study of the efficacy and safety of donepezil in patients with Alzheimer’s disease in the nursing home setting. J Am Geriatr Soc. 2001;49(12):1590–9. https://doi.org/10.1111/j.1532-5415.2001.49266.x.

    Article  CAS  PubMed  Google Scholar 

  33. Holmes C, Wilkinson D, Dean C, Vethanayagam S, Olivieri S, Langley A, Pandita-Gunawardena ND, Hogg F, Clare C, Damms J. The efficacy of donepezil in the treatment of neuropsychiatric symptoms in Alzheimer disease. Neurology. 2004;63(2):214–9. https://doi.org/10.1212/01.Wnl.0000129990.32253.7b.

    Article  CAS  PubMed  Google Scholar 

  34. Weisgraber HDP-LCKH. Apolipoprotein E structure: insights into function. Trends Biochem Sci. 2006;31: 445454.

    Google Scholar 

  35. Graham WV, Bonito-Oliva A, Sakmar TP. Update on Alzheimer’s disease therapy and prevention strategies. Annu Rev Med. 2017;68:413–30.

    Article  CAS  PubMed  Google Scholar 

  36. Zhang Y, Zhang YI. Extraction of a source signal whose kurtosis value lies in a specific range. 2006;69 (7-9): 900-904.

  37. Dhiman N, Bhattacharya A. Nardostachys jatamansi (D.Don) DC.-Challenges and opportunities of harnessing the untapped medicinal plant from the Himalayas. J Ethnopharmacol. 2020;246:112211. https://doi.org/10.1016/j.jep.2019.112211.

    Article  CAS  PubMed  Google Scholar 

  38. Pacheco SM, Soares MSP, Gutierres JM, Gerzson MFB, Carvalho FB, Azambuja JH, Schetinger MRC, Stefanello FM, Spanevello RM. Anthocyanins as a potential pharmacological agent to manage memory deficit, oxidative stress and alterations in ion pump activity induced by experimental sporadic dementia of Alzheimer’s type. J Nutr Biochem. 2018;56:193–204. https://doi.org/10.1016/j.jnutbio.2018.02.014.

    Article  CAS  PubMed  Google Scholar 

  39. Patil P, Thakur A, Sharma A, Flora SJS. Natural products and their derivatives as multifunctional ligands against Alzheimer’s disease. Drug Dev Res. 2020;81(2):165–83. https://doi.org/10.1002/ddr.21587.

    Article  CAS  PubMed  Google Scholar 

  40. Islam F, Khadija JF, Harun-Or-Rashid M, Rahaman MS, Nafady MH, Islam MR, Akter A, Emran TB, Wilairatana P, Mubarak MS. Bioactive compounds and their derivatives: an insight into prospective phytotherapeutic approach against Alzheimer’s disease. Oxid Med Cell Longev. 2022;2022:5100904. https://doi.org/10.1155/2022/5100904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Singh S, Supaweera N, Nwabor OF, Chaichompoo W, Suksamrarn A, Chittasupho C, Chunglok W. Poly (vinyl alcohol)-gelatin-sericin copolymerized film fortified with vesicle-entrapped demethoxycurcumin/bisdemethoxycurcumin for improved stability, antibacterial, anti-inflammatory, and skin tissue regeneration. Int J Biol Macromol. 2024;258:129071. https://doi.org/10.1016/j.ijbiomac.2023.129071.

    Article  CAS  PubMed  Google Scholar 

  42. Zhu CC, Fu SY, Chen YX, Li L, Mao RL, Wang JZ, Liu R, Liu Y, Wang XC. Advances in drug therapy for Alzheimer’s disease. Current medical science. 2020;40(6):999–1008. https://doi.org/10.1007/s11596-020-2281-2.

    Article  CAS  PubMed  Google Scholar 

  43. El-Shiekh RA, Ashour RM, Abd El-Haleim EA, Ahmed KA, Abdel-Sattar E. Hibiscus sabdariffa L.: A potent natural neuroprotective agent for the prevention of streptozotocin-induced Alzheimer’s disease in mice. Biomed Pharmacother. 2020;128:110303. https://doi.org/10.1016/j.biopha.2020.110303.

    Article  CAS  PubMed  Google Scholar 

  44. Lakshmi S, Prakash P, Essa MM, Qoronfleh WM, Akbar M, Song BJ, Kumar S, Elumalai P. Marine derived bioactive compounds for treatment of Alzheimer’s disease. Front Biosci (Elite Ed). 2018;10(3):537–48. https://doi.org/10.2741/e840.

    Article  PubMed  Google Scholar 

  45. Kim HJ, Jung SW, Kim SY, Cho IH, Kim HC, Rhim H, Kim M, Nah SY. Panax ginseng as an adjuvant treatment for Alzheimer’s disease. J Ginseng Res. 2018;42(4):401–11. https://doi.org/10.1016/j.jgr.2017.12.008.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Agatonovic-Kustrin S, Kettle C, Morton DW. A molecular approach in drug development for Alzheimer’s disease. Biomed Pharmacother. 2018;106:553–65. https://doi.org/10.1016/j.biopha.2018.06.147.

    Article  CAS  PubMed  Google Scholar 

  47. Prajapati R, Park SE, Park HJ, Jung HA, Choi JS. Identification of a potent and selective human monoamine oxidase-a inhibitor, glycitein, an isoflavone isolated from Pueraria lobata flowers. ACS Food Sci Technol. 2021;1(4):538–50. https://doi.org/10.1021/acsfoodscitech.0c00152.

    Article  CAS  Google Scholar 

  48. Tarabasz D, Szczeblewski P, Laskowski T, Płaziński W, Baranowska-Wójcik E, Szwajgier D, Kukula-Koch W, Meissner HO. The distribution of glucosinolates in different phenotypes of lepidium peruvianum and their role as acetyl- and butyrylcholinesterase inhibitors-in silico and in vitro studies. Int J Mol Sci. 2022;23(9). https://doi.org/10.3390/ijms23094858.

  49. Rathnayake AU, Abuine R, Kim YJ, Byun HG. Anti-Alzheimer’s materials isolated from marine bio-resources: a review. Curr Alzheimer Res. 2019;16(10):895–906. https://doi.org/10.2174/1567205016666191024144044.

    Article  CAS  PubMed  Google Scholar 

  50. Ibrahim Fouad G, Zaki Rizk M. Possible neuromodulating role of different grape (Vitis vinifera L.) derived polyphenols against Alzheimer’s dementia: treatment and mechanisms. Bull Natl Res Cent. 2019;43(1):108. https://doi.org/10.1186/s42269-019-0149-z.

    Article  Google Scholar 

  51. Chen X, Drew J, Berney W, Lei W. Neuroprotective natural products for Alzheimer’s disease. Cells. 2021;10(6). https://doi.org/10.3390/cells10061309.

  52. Gul M, Liu ZW, Iahtisham Ul H, Rabail R, Faheem F, Walayat N, Nawaz A, Shabbir MA, Munekata PES, Lorenzo JM, Aadil RM. Functional and nutraceutical significance of amla (Phyllanthus emblica L.): a review. Antioxidants (Basel, Switzerland). 2021;11 (5). https://doi.org/10.3390/antiox11050816.

  53. Cheung HM, Yew DTW. Chapter 18 - Neuroprotective mechanisms of Ginkgo biloba against oxidative stress. In: Martin CR, Preedy VR, editors. Oxidative stress and dietary antioxidants in neurological diseases. Academic Press; 2020. p. 271–90. https://doi.org/10.1016/B978-0-12-817780-8.00018-9.

    Chapter  Google Scholar 

  54. Mourelle ML, Gómez CP, Legido JL. Role of algal derived compounds in pharmaceuticals and cosmetics. In: Recent advances in micro and macroalgal processing. 2021;537–603. https://doi.org/10.1002/9781119542650.ch19.

  55. Mehla J, Gupta P, Pahuja M, Diwan D, Diksha D. Indian medicinal herbs and formulations for Alzheimer’s disease, from traditional knowledge to scientific assessment. Brain Sciences. 2020;10(12). https://doi.org/10.3390/brainsci10120964.

  56. Chauhan B, Patel S, Prajapati BG, Singh S. Chapter 21 - Drug delivery for Alzheimer’s disease using nanotechnology: challenges and advancements. In: Prajapati BG, Chellappan DK, Kendre PN, editors. Alzheimer’s disease and advanced drug delivery strategies. Academic Press; 2024. p. 361–71. https://doi.org/10.1016/B978-0-443-13205-6.00011-X.

    Chapter  Google Scholar 

  57. Garcia MJ, Leadley R, Lang S, Ross J, Vinand E, Ballard C, Gsteiger S. Real-world use of symptomatic treatments in early Alzheimer’s disease. J Alzheimers Dis. 2023;91(1):151–67. https://doi.org/10.3233/jad-220471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sutthapitaksakul L, Thanawuth K, Dass CR, Sriamornsak P. Optimized taste-masked microparticles for orally disintegrating tablets as a promising dosage form for Alzheimer’s disease patients. Pharmaceutics. 2021;13(7). https://doi.org/10.3390/pharmaceutics13071046.

  59. Ghadiri M, Young PM, Traini D. Strategies to enhance drug absorption via nasal and pulmonary routes. Pharmaceutics. 2019;11(3). https://doi.org/10.3390/pharmaceutics11030113.

  60. Lungare S, Bowen J, Badhan R. Development and evaluation of a novel intranasal spray for the delivery of amantadine. J Pharm Sci. 2016;105(3):1209–20. https://doi.org/10.1016/j.xphs.2015.12.016.

    Article  CAS  PubMed  Google Scholar 

  61. Gartziandia O, Egusquiaguirre SP, Bianco J, Pedraz JL, Igartua M, Hernandez RM, Préat V, Beloqui A. Nanoparticle transport across in vitro olfactory cell monolayers. Int J Pharm. 2016;499(1):81–9. https://doi.org/10.1016/j.ijpharm.2015.12.046.

    Article  CAS  PubMed  Google Scholar 

  62. Crowe TP, Greenlee MHW, Kanthasamy AG, Hsu WH. Mechanism of intranasal drug delivery directly to the brain. Life Sci. 2018;195:44–52. https://doi.org/10.1016/j.lfs.2017.12.025.

    Article  CAS  PubMed  Google Scholar 

  63. Martins, Smyth HDC, Cui Z. Strategies to facilitate or block nose-to-brain drug delivery. Int J Pharm. 2019;570:118635. https://doi.org/10.1016/j.ijpharm.2019.118635.

    Article  CAS  PubMed  Google Scholar 

  64. Al Asmari AK, Ullah Z, Tariq M, Fatani A. Preparation, characterization, and in vivo evaluation of intranasally administered liposomal formulation of donepezil. Drug Des Dev Ther. 2016;10:205–15. https://doi.org/10.2147/dddt.S93937.

    Article  CAS  Google Scholar 

  65. Agrawal M, Saraf S, Saraf S, Antimisiaris SG, Chougule MB, Shoyele SA, Alexander A. Nose-to-brain drug delivery: an update on clinical challenges and progress towards approval of anti-Alzheimer drugs. J Control Release. 2018;281:139–77. https://doi.org/10.1016/j.jconrel.2018.05.011.

    Article  CAS  PubMed  Google Scholar 

  66. Adnet T, Groo A-C, Picard C, Davis A, Corvaisier S, Since M, Bounoure F, Rochais C, Le Pluart L, Dallemagne P, Malzert-Fréon A. Pharmacotechnical development of a nasal drug delivery composite nanosystem intended for Alzheimer’s disease treatment. Pharmaceutics. 2020;12(3). https://doi.org/10.3390/pharmaceutics12030251.

  67. Karthivashan G, Ganesan P, Park SY, Kim JS, Choi DK. Therapeutic strategies and nano-drug delivery applications in management of ageing Alzheimer’s disease. Drug Deliv. 2018;25(1):307–20. https://doi.org/10.1080/10717544.2018.1428243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Fonseca-Santos B, Gremião MP, Chorilli M. Nanotechnology-based drug delivery systems for the treatment of Alzheimer’s disease. Int J Nanomed. 2015;10:4981–5003. https://doi.org/10.2147/ijn.S87148.

    Article  CAS  Google Scholar 

  69. Rabiee N, Ahmadi S, Afshari R, Khalaji S, Rabiee M, Bagherzadeh M, Fatahi Y, Dinarvand R, Tahriri M, Tayebi L, Hamblin MR, Webster TJ. Polymeric nanoparticles for nasal drug delivery to the brain: relevance to Alzheimer’s disease. Adv Ther. 2021;4(3):2000076. https://doi.org/10.1002/adtp.202000076.

    Article  CAS  Google Scholar 

  70. Tapeinos C, Battaglini M, Ciofani G. Advances in the design of solid lipid nanoparticles and nanostructured lipid carriers for targeting brain diseases. J Control Release. 2017;264:306–32. https://doi.org/10.1016/j.jconrel.2017.08.033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hernandez C, Shukla S. Liposome based drug delivery as a potential treatment option for Alzheimer’s disease. Neural Regeneration Research. 2022;17(6).

  72. Balducci C, Mancini S, Minniti S, Vitola PL, Zotti M, Sancini G, Mauri M, Cagnotto A, Colombo L, Fiordaliso F, Grigoli E, Salmona M, Snellman A, Haaparanta-Solin M, Forloni G, Masserini M, Re F. Multifunctional liposomes reduce brain β-amyloid burden and ameliorate memory impairment in Alzheimer’s disease mouse models. J Neurosci. 2014;34(42):14022–31. https://doi.org/10.1523/jneurosci.0284-14.2014.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Modi C, Prajapati BG, Singh S, Singh A, Maheshwari S. Chapter 14 - Dendrimers in the management of Alzheimer’s disease. In: Prajapati BG, Chellappan DK, Kendre PN, editors. Alzheimer’s disease and advanced drug delivery strategies. Academic Press; 2024. p. 235–51. https://doi.org/10.1016/B978-0-443-13205-6.00028-5.

    Chapter  Google Scholar 

  74. Arbez-Gindre C, Steele BR, Micha-Screttas M. Dendrimers in Alzheimer’s disease: recent approaches in multi-targeting strategies. Pharmaceutics. 2023;15(3):898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Patel AV, Shah BN. Transdermal drug delivery system: a review. Pharma Science Monitor. 2018;9(1).

  76. Winblad B, Machado JC. Use of rivastigmine transdermal patch in the treatment of Alzheimer’s disease. Expert Opin Drug Deliv. 2008;5(12):1377–86. https://doi.org/10.1517/17425240802542690.

    Article  CAS  PubMed  Google Scholar 

  77. Blesa R, Ballard C, Orgogozo J-M, Lane R, Thomas SK. Caregiver preference for rivastigmine patches versus capsules for the treatment of Alzheimer disease. Neurology. 2007;69(4 suppl 1):S23. https://doi.org/10.1212/01.wnl.0000281848.25142.11.

    Article  CAS  PubMed  Google Scholar 

  78. Sadeghi M, Ganji F, Taghizadeh SM, Daraei B. Preparation and characterization of rivastigmine transdermal patch based on chitosan microparticles. Iran J Pharm Res. 2016;15(3):283–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Nguyen TT, Giau VV, Vo TK. Current advances in transdermal delivery of drugs for Alzheimer’s disease. Indian J Pharmacol. 2017;49(2):145–54. https://doi.org/10.4103/0253-7613.208143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yoon Y-K, Park J-H, Allen MG. Multidirectional UV lithography for complex 3-D MEMS structures. J Microelectromech Syst. 2006;15(5):1121–30.

    Article  Google Scholar 

  81. Perennes F, Marmiroli B, Matteucci M, Tormen M, Vaccari L, Di Fabrizio E. Sharp beveled tip hollow microneedle arrays fabricated by LIGA and 3D soft lithography with polyvinyl alcohol. J Micromech Microeng. 2006;16(3):473.

    Article  CAS  Google Scholar 

  82. Assaf SM, Sallam ASA, Ghanem AM. Design and evaluation of transdermal delivery system containing tamsulosin hydrochloride. J Drug Deliv Sci Technol. 2019;51:524–34. https://doi.org/10.1016/j.jddst.2019.03.023.

    Article  CAS  Google Scholar 

  83. Pons-Faudoa FP, Ballerini A, Sakamoto J, Grattoni A. Advanced implantable drug delivery technologies: transforming the clinical landscape of therapeutics for chronic diseases. Biomed Microdevice. 2019;21(2):47. https://doi.org/10.1007/s10544-019-0389-6.

    Article  Google Scholar 

  84. Laubach J, Joseph M, Brenza T, Gadhamshetty V, Sani RK. Exopolysaccharide and biopolymer-derived films as tools for transdermal drug delivery. J Control Release. 2021;329:971–87. https://doi.org/10.1016/j.jconrel.2020.10.027.

    Article  CAS  PubMed  Google Scholar 

  85. Laracuente ML, Yu MH, McHugh KJ. Zero-order drug delivery: state of the art and future prospects. J Control Release. 2020;327:834–56. https://doi.org/10.1016/j.jconrel.2020.09.020.

    Article  CAS  PubMed  Google Scholar 

  86. Park D-W, Schendel AA, Mikael S, Brodnick SK, Richner TJ, Ness JP, Hayat MR, Atry F, Frye ST, Pashaie R, Thongpang S, Ma Z, Williams JC. Graphene-based carbon-layered electrode array technology for neural imaging and optogenetic applications. Nat Commun. 2014;5(1):5258. https://doi.org/10.1038/ncomms6258.

    Article  ADS  CAS  PubMed  Google Scholar 

  87. Tybrandt K, Khodagholy D, Dielacher B, Stauffer F, Renz AF, Buzsáki G, Vörös J. High-density stretchable electrode grids for chronic neural recording. Adv Mater. 2018;30(15):1706520. https://doi.org/10.1002/adma.201706520.

    Article  CAS  Google Scholar 

  88. Li J, Zeng M, Shan H, Tong C. Microneedle patches as drug and vaccine delivery platform. Curr Med Chem. 2017;24(22):2413–22. https://doi.org/10.2174/0929867324666170526124053.

    Article  CAS  PubMed  Google Scholar 

  89. Kearney M-C, Caffarel-Salvador E, Fallows SJ, McCarthy HO, Donnelly RF. Microneedle-mediated delivery of donepezil: potential for improved treatment options in Alzheimer’s disease. Eur J Pharm Biopharm. 2016;103:43–50. https://doi.org/10.1016/j.ejpb.2016.03.026.

    Article  CAS  PubMed  Google Scholar 

  90. Willemen NG, Morsink MA, Veerman D, Da Silva CF, Cardoso JC, Souto EB, Severino PJB-D, Manufacturing. From oral formulations to drug-eluting implants: using 3D and 4D printing to develop drug delivery systems and personalized medicine. 2022;1–22.

  91. Vyas J, Singh S, Shah I, Prajapati BG. Potential applications and additive manufacturing technology-based considerations of mesoporous silica: a review. AAPS PharmSciTech. 2023;25(1):6. https://doi.org/10.1208/s12249-023-02720-7.

    Article  CAS  PubMed  Google Scholar 

  92. Zhao T, Yu R, Li X, Cheng B, Zhang Y, Yang X, Zhao X, Zhao Y, Huang WJEPJ. 4D printing of shape memory polyurethane via stereolithography. 2018;101:120-126.

  93. Chen G, Yang Y, Xu Q, Ling M, Lin H, Ma W, Sun R, Xu Y, Liu X, Li N, Yu Z, Yu M. Self-amplification of tumor oxidative stress with degradable metallic complexes for synergistic cascade tumor therapy. Nano Lett. 2020;20(11):8141–50. https://doi.org/10.1021/acs.nanolett.0c03127.

    Article  ADS  CAS  PubMed  Google Scholar 

  94. Chen BZ, Yang Y, Wang BB, Ashfaq M, Guo XD. Self-implanted tiny needles as alternative to traditional parenteral administrations for controlled transdermal drug delivery. Int J Pharm. 2019;556:338–48. https://doi.org/10.1016/j.ijpharm.2018.12.019.

    Article  CAS  PubMed  Google Scholar 

  95. Sullivan SP, Koutsonanos DG, del Pilar MM, Lee JW, Zarnitsyn V, Choi S-O, Murthy N, Compans RW, Skountzou I, Prausnitz MR. Dissolving polymer microneedle patches for influenza vaccination. Nat Med. 2010;16(8):915–20. https://doi.org/10.1038/nm.2182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Vyavahare S, Mahesh V, Mahesh V, Harursampath D. Additively manufactured meta-biomaterials: a state-of-the-art review. Compos Struct. 2023;305: 116491.

    Article  Google Scholar 

  97. Singh S. Biopolymers towards green and sustainable development. Bentham Science Publishers. 2022.

  98. Mohite P, Shah SR, Singh S, Rajput T, Munde S, Ade N, Prajapati BG, Paliwal H, Mori DD, Dudhrejiya AV. Chitosan and chito-oligosaccharide: a versatile biopolymer with endless grafting possibilities for multifarious applications. Front Bioeng Biotechnol. 2023;11. https://doi.org/10.3389/fbioe.2023.1190879.

  99. Mohite P, Rahayu P, Munde S, Ade N, Chidrawar VR, Singh S, Jayeoye TJ, Prajapati BG, Bhattacharya S, Patel RJ. Chitosan-based hydrogel in the management of dermal infections: a review. Gels. 2023;9(7):594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Singh S, Nwabor OF, Syukri DM, Voravuthikunchai SP. Chitosan-poly(vinyl alcohol) intelligent films fortified with anthocyanins isolated from Clitoria ternatea and Carissa carandas for monitoring beverage freshness. Int J Biol Macromol. 2021;182:1015–25. https://doi.org/10.1016/j.ijbiomac.2021.04.027.

    Article  CAS  PubMed  Google Scholar 

  101. Karati D, Mukherjee S, Singh S, Prajapati BG, Basu B. Biopolymer-based nano-formulations for mitigation of ocular infections: a review. Polym Bull. 2023. https://doi.org/10.1007/s00289-023-05095-8.

    Article  Google Scholar 

  102. Nwabor OF, Singh S, Paosen S, Vongkamjan K, Voravuthikunchai SP. Enhancement of food shelf life with polyvinyl alcohol-chitosan nanocomposite films from bioactive Eucalyptus leaf extracts. Food Biosci. 2020;36:100609. https://doi.org/10.1016/j.fbio.2020.100609.

    Article  CAS  Google Scholar 

  103. Bai T, Thakur A, Zheng Y, Liu W, Wang L, Chen M, Jia Z, Yu S, Zhou W. Citric acid fine-tuned silk fibroin/silver nanocomposite coating affords biomimetic, infection-defensive and pro-healing/osteo-angiogenic microenvironments for functional implant osseointegration. Appl Mater Today. 2024;36:102054.

    Article  Google Scholar 

  104. Bračič M, Potrč S, Finšgar M, Gradišnik L, Maver U, Budasheva H, Korte D, Franko M, Zemljič LF. Amoxicillin doped hyaluronic acid/fucoidan multifunctional coatings for medical grade stainless steel orthopedic implants. Appl Surf Sci. 2023;611:155621.

    Article  Google Scholar 

  105. Ding Y, Ma R, Liu G, Li X, Xu K, Liu P, Cai K. Fabrication of a new hyaluronic acid/gelatin nanocomposite hydrogel coating on titanium-based implants for treating biofilm infection and excessive inflammatory response. ACS Appl Mater Interfaces. 2023;15(10):13783–801.

    Article  CAS  PubMed  Google Scholar 

  106. Sharma R, Malviya R, Singh S, Prajapati B. A critical review on classified excipient sodium-alginate-based hydrogels: modification, characterization, and application in soft tissue engineering. Gels. 2023;9(5):430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sudarshan Singh WC. Conformational, morphological, and physical characterization of bio-based polymers In: Sudarshan Singh WC (ed) Biopolymers towards green and sustainable development. 2022;1–73. https://doi.org/10.2174/9789815079302122010006.

  108. Sudarshan Singh WC. Thermo-mechanical properties of bio-based polymers. In: Biopolymers towards green and sustainable development. 2022;1–90. https://doi.org/10.2174/9789815079302122010007.

  109. Patel RP, Patel GK, Patel N, Singh S, Chittasupho C. In: Shegokar R, Pathak Y, editors. Tubercular drug delivery systems: advances in treatment of infectious diseases. Cham: Springer International Publishing; 2023. p. 207–34. https://doi.org/10.1007/978-3-031-14100-3_11.

    Chapter  Google Scholar 

  110. Singh S, Nwabor OF, Ontong JC, Kaewnopparat N, Voravuthikunchai SP. Characterization of a novel, co-processed bio-based polymer, and its effect on mucoadhesive strength. Int J Biol Macromol. 2020;145:865–75. https://doi.org/10.1016/j.ijbiomac.2019.11.198.

    Article  CAS  PubMed  Google Scholar 

  111. Singh S, Nwabor OF, Ontong JC, Voravuthikunchai SP. Characterization and assessment of compression and compactibility of novel spray-dried, co-processed bio-based polymer. J Drug Deliv Sci Technol. 2020;56:101526. https://doi.org/10.1016/j.jddst.2020.101526.

    Article  CAS  Google Scholar 

  112. Streza A, Antoniac A, Manescu V, Paltanea G, Robu A, Dura H, Verestiuc L, Stanica E, Voicu SI, Antoniac I. Effect of filler types on cellulose-acetate-based composite used as coatings for biodegradable magnesium implants for trauma. Materials. 2023;16(2):554.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  113. Nefjodovs V, Andze L, Andzs M, Filipova I, Tupciauskas R, Vecbiskena L, Kapickis M. Wood as possible renewable material for bone implants—literature review. J Funct Biomater. 2023;14(5):266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Annuryanti F, Domínguez-Robles J, Anjani QK, Adrianto MF, Larrañeta E, Thakur RRS. Fabrication and characterisation of 3D-printed triamcinolone acetonide-loaded polycaprolactone-based ocular implants. Pharmaceutics. 2023;15(1):243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Hwang B-Y, Noh K, Lee J-W. Long-term follow-up of a novel surgical option combining fibula free flap and 3D-bioprinted, patient-specific polycaprolactone (PCL) Implant for Mandible Reconstruction. Bioengineering. 2023;10(6):684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ontong JC, Singh S, Siriyong T, Voravuthikunchai SP. Transferosomes stabilized hydrogel incorporated rhodomyrtone-rich extract from Rhodomyrtus tomentosa leaf fortified with phosphatidylcholine for the management of skin and soft-tissue infections. Biotech Lett. 2024;46(1):127–42. https://doi.org/10.1007/s10529-023-03452-1.

    Article  CAS  Google Scholar 

  117. Singh S, Dodiya TR, Dodiya R, Ushir YV, Widodo S. Lipid nanoparticulate drug delivery systems: a revolution in dosage form design and development. In: Drug carriers. IntechOpen; 2022. https://doi.org/10.5772/intechopen.104510.

    Chapter  Google Scholar 

  118. Kapoor DU, Gaur M, Parihar A, Prajapati BG, Singh S, Patel RJ. Phosphatidylcholine (PCL) fortified nano-phytopharmaceuticals for improvement of therapeutic efficacy. EXCLI J. 2023;22:880–903.

    PubMed  PubMed Central  Google Scholar 

  119. Mohite P, Singh S, Pawar A, Sangale A, Prajapati BG. Lipid-based oral formulation in capsules to improve the delivery of poorly water-soluble drugs. Front Drug Deliv. 2023;3. https://doi.org/10.3389/fddev.2023.1232012.

  120. Chittasupho C, Chaobankrang K, Sarawungkad A, Samee W, Singh S, Hemsuwimon K, Okonogi S, Kheawfu K, Kiattisin K, Chaiyana W. Antioxidant, anti-inflammatory and attenuating intracellular reactive oxygen species activities of Nicotiana tabacum var. virginia leaf extract phytosomes and shape memory gel formulation. Gels. 2023;9(2):78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Patel R, Singh S, Singh S, Sheth N, Gendle R. Development and characterization of curcumin loaded transfersome for transdermal delivery. J Pharm Sci Res. 2009;1(4):71.

    Google Scholar 

  122. Kunrath MF, Shah FA, Dahlin C. Bench-to-bedside: feasibility of nano-engineered and drug-delivery biomaterials for bone-anchored implants and periodontal applications. Materials Today Bio. 2023;18:100540.

    Article  CAS  PubMed  Google Scholar 

  123. Peng Z, Xie C, Jin S, Hu J, Yao X, Ye J, Zhang X, Lim JX, Wu B, Wu H. Biomaterial based implants caused remote liver fatty deposition through activated blood-derived Kupffer cells. bioRxiv. 2023;2023–2004.

  124. Khaohoen A, Sornsuwan T, Chaijareenont P, Poovarodom P, Rungsiyakull C, Rungsiyakull P. Biomaterials and clinical application of dental implants in relation to bone density—a narrative review. J Clin Med. 2023;12(21):6924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Al-Shalawi FD, Mohamed Ariff AH, Jung D-W, Mohd Ariffin MKA, Seng Kim CL, Brabazon D, Al-Osaimi MO. Biomaterials as implants in the orthopedic field for regenerative medicine: metal versus synthetic polymers. Polymers. 2023;15(12):2601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Elleuch S, Jrad H, Wali M, Dammak F. Mandibular bone remodeling around osseointegrated functionally graded biomaterial implant using three dimensional finite element model. Int J Numer Method Biomed Eng. 2023;39(9):e3750.

    Article  PubMed  Google Scholar 

  127. Li J, Zhao C, Xu Y, Song L, Chen Y, Xu Y, Ma Y, Wang S, Xu A, He F. Remodeling of the osteoimmune microenvironment after biomaterials implantation in murine tibia: single-cell transcriptome analysis. Bioact Mater. 2023;22:404–22.

    CAS  PubMed  Google Scholar 

  128. Abraham AM, Venkatesan S. A review on application of biomaterials for medical and dental implants. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications. 2023;237(2):249–73.

    Article  CAS  Google Scholar 

  129. Intravaia JT, Graham T, Kim HS, Nanda HS, Kumbar SG, Nukavarapu SP. Smart orthopedic biomaterials and implants. Curr Opin Biomed Eng. 2023;25:100439.

    Article  CAS  PubMed  Google Scholar 

  130. Vasudev H, Prakash C. Surface engineering and performance of biomaterials. J Electrochem Sci Eng. 2023;13(1):1–3.

    Article  Google Scholar 

  131. Zeng L, Lin X, Li P, Liu F-Q, Guo H, Li W-HJPioc. Recent advances of organogels: from fabrications and functions to applications. 2021;159:106417.

  132. Choi J-r, Kim S-M, Ryu R-H, Kim S-P, Sohn J-wJEn. Implantable neural probes for brain-machine interfaces–current developments and future prospects. 2018;27 (6):453.

  133. Karatum O, Gwak M-J, Hyun J, Onal A, Koirala GR, Kim T-i, Nizamoglu S. Optical neuromodulation at all scales: from nanomaterials to wireless optoelectronics and integrated systems. Chem Soc Rev. 2023.

  134. Stewart SA, Domínguez-Robles J, Donnelly RF, Larrañeta E. Implantable polymeric drug delivery devices: classification, manufacture, materials, and clinical applications. Polymers. 2018;10(12). https://doi.org/10.3390/polym10121379.

  135. Bakhrushina EO, Demina NB. Implants as targeted drug delivery systems (review). Pharm Chem J. 2022;56(3):396–402. https://doi.org/10.1007/s11094-022-02649-4.

    Article  CAS  Google Scholar 

  136. Rastegar Ramsheh ZS, Mohtashami Z, Kargar N, Akbari Javar H, Rafiee Tehrani M, Abedin Dorkoosh F. Design and in vitro evaluation of a slow-release intraocular implant of betamethasone. AAPS PharmSciTech. 2021;22(5):174. https://doi.org/10.1208/s12249-021-02048-0.

    Article  CAS  PubMed  Google Scholar 

  137. Joyce K, Fabra GT, Bozkurt Y, Pandit A. Bioactive potential of natural biomaterials: identification, retention and assessment of biological properties. Signal Transduct Target Ther. 2021;6(1):122. https://doi.org/10.1038/s41392-021-00512-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Kharbikar BN, Chendke GS, Desai TA. Modulating the foreign body response of implants for diabetes treatment. Adv Drug Deliv Rev. 2021;174:87–113. https://doi.org/10.1016/j.addr.2021.01.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Nguyen K, Hoffman H, Chakkamparambil B, Grossberg GT. Evaluation of rivastigmine in Alzheimer’s disease. Neurodegener Dis Manag. 2021;11(1):35–48.

    Article  PubMed  Google Scholar 

  140. Han HJ, Kim BC, Lee J-Y, Ryu S-H, Na HR, Yoon SJ, Park HY, Shin JH, Cho S-J, Yi H-A. Response to rivastigmine transdermal patch or memantine plus rivastigmine patch is affected by apolipoprotein E genotype in Alzheimer patients. Dement Geriatr Cogn Disord. 2012;34(3–4):167–73.

    Article  CAS  PubMed  Google Scholar 

  141. Farlow MR, Alva G, Meng X, Olin JT. A 25-week, open-label trial investigating rivastigmine transdermal patches with concomitant memantine in mild-to-moderate Alzheimer’s disease: a post hoc analysis. Curr Med Res Opin. 2010;26(2):263–9. https://doi.org/10.1185/03007990903434914.

    Article  CAS  PubMed  Google Scholar 

  142. Choi SH, Park KW, Na DL, Han HJ, Kim E-J, Shim YS, Lee J-H, The ESG. Tolerability and efficacy of memantine add-on therapy to rivastigmine transdermal patches in mild to moderate Alzheimer’s disease: a multicenter, randomized, open-label, parallel-group study. Curr Med Res Opin. 2011;27(7):1375–83. https://doi.org/10.1185/03007995.2011.582484.

    Article  CAS  PubMed  Google Scholar 

  143. Padmakumar S, Jones G, Khorkova O, Hsiao J, Kim J, Bleier BS, Amiji MM. Osmotic core-shell polymeric implant for sustained BDNF AntagoNAT delivery in CNS using minimally invasive nasal depot (MIND) approach. Biomaterials. 2021;276:120989. https://doi.org/10.1016/j.biomaterials.2021.120989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Kim J-Y, Han M-R, Kim Y-H, Shin S-W, Nam S-Y, Park J-H. Tip-loaded dissolving microneedles for transdermal delivery of donepezil hydrochloride for treatment of Alzheimer’s disease. Eur J Pharm Biopharm. 2016;105:148–55. https://doi.org/10.1016/j.ejpb.2016.06.006.

    Article  CAS  PubMed  Google Scholar 

  145. Zhao ZQ, Liang L, Hu LF, He YT, Jing LY, Liu Y, Chen BZ, Guo XD. Subcutaneous implantable microneedle system for the treatment of Alzheimer’s disease by delivering donepezil. Biomacromol. 2022;23(12):5330–9. https://doi.org/10.1021/acs.biomac.2c01155.

    Article  CAS  Google Scholar 

  146. Yan Q, Wang W, Weng J, Zhang Z, Yin L, Yang Q, Guo F, Wang X, Chen F, Yang G. Dissolving microneedles for transdermal delivery of huperzine A for the treatment of Alzheimer’s disease. Drug Delivery. 2020;27(1):1147–55. https://doi.org/10.1080/10717544.2020.1797240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Zhou Z, Shi Q, Wang J, Chen X, Hao Y, Zhang Y, Wang X. The unfavorable role of titanium particles released from dental implants. Nanotheranostics. 2021;5(3):321.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Ruan S, Li J, Ruan H, Xia Q, Hou X, Wang Z, Guo T, Zhu C, Feng N, Zhang Y. Microneedle-mediated nose-to-brain drug delivery for improved Alzheimer’s disease treatment. J Control Release. 2024;366:712–31. https://doi.org/10.1016/j.jconrel.2024.01.013.

    Article  CAS  PubMed  Google Scholar 

  149. Rajput A, Butani S. Donepezil HCl liposomes: development, characterization, cytotoxicity, and pharmacokinetic study. AAPS PharmSciTech. 2022;23(2):74. https://doi.org/10.1208/s12249-022-02209-9.

    Article  CAS  PubMed  Google Scholar 

  150. Espinoza LC, Guaya D, Calpena AC, Perotti RM, Halbaut L, Sosa L, Brito-Llera A, Mallandrich M. Comparative study of donepezil-loaded formulations for the treatment of Alzheimer’s disease by nasal administration. Gels. 2022;8(11). https://doi.org/10.3390/gels8110715.

  151. Papakyriakopoulou P, Rekkas DM, Colombo G, Valsami G. Development and in vitro-ex vivo evaluation of novel polymeric nasal donepezil films for potential use in Alzheimer Comparative study of donepezil-loaded formulations for the treatment of Alzheimer’s disease by nasal administration. s disease using experimental design. Pharmaceutics. 2022;14(8). https://doi.org/10.3390/pharmaceutics14081742.

  152. Quan P, Guo W, LinYang CD, Yang M. Donepezil accelerates the release of PLGA microparticles via catalyzing the polymer degradation regardless of the end groups and molecular weights. Int J Pharm. 2023;632:122566. https://doi.org/10.1016/j.ijpharm.2022.122566.

    Article  CAS  PubMed  Google Scholar 

  153. Permana AD, Ramadhan Aziz AY, Sam A, Djabir YY, Arsyad MA, Harahap Y, Munir M, Saputri WD, Fajarwati R, Darmawan N. Development of hyaluronic acid-based microneedles for improved brain delivery of rivastigmine nanoparticles via mystacial pad region. J Drug Deliv Sci Technol. 2023;90:105183. https://doi.org/10.1016/j.jddst.2023.105183.

    Article  CAS  Google Scholar 

  154. Guimarães TMT, Moniz T, Nunes C, Zaharieva MM, Kaleva M, Yoncheva K, Najdenski H, Costa Lima SA, Reis S. Polymeric microneedles for transdermal delivery of rivastigmine: design and application in skin mimetic model. Pharmaceutics. 2022;14(4). https://doi.org/10.3390/pharmaceutics14040752.

  155. Bhanderi M, Shah J, Gorain B, Nair AB, Jacob S, Asdaq SMB, Fattepur S, Alamri AS, Alsanie WF, Alhomrani M, Nagaraja S, Anwer MK. Optimized rivastigmine nanoparticles coated with eudragit for intranasal application to brain delivery: evaluation and nasal ciliotoxicity studies. Materials (Basel). 2021;14 (21). https://doi.org/10.3390/ma14216291.

  156. Vos PJ, Kuijt N, Kaya M, Rol S, van der Maaden K. Nanoporous microneedle arrays seamlessly connected to a drug reservoir for tunable transdermal delivery of memantine. Eur J Pharm Sci. 2020;150:105331. https://doi.org/10.1016/j.ejps.2020.105331.

    Article  CAS  PubMed  Google Scholar 

  157. Sánchez-López E, Ettcheto M, Egea MA, Espina M, Cano A, Calpena AC, Camins A, Carmona N, Silva AM, Souto EB, García ML. Memantine loaded PLGA PEGylated nanoparticles for Alzheimer’s disease: in vitro and in vivo characterization. J Nanobiotechnology. 2018;16(1):32. https://doi.org/10.1186/s12951-018-0356-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Li W, Zhou Y, Zhao N, Hao B, Wang X, Kong P. Pharmacokinetic behavior and efficiency of acetylcholinesterase inhibition in rat brain after intranasal administration of galanthamine hydrobromide loaded flexible liposomes. Environ Toxicol Pharmacol. 2012;34(2):272–9.

    Article  PubMed  Google Scholar 

  159. Misra S, Chopra K, Sinha VR, Medhi B. Galantamine-loaded solid–lipid nanoparticles for enhanced brain delivery: preparation, characterization, in vitro and in vivo evaluations. Drug Deliv. 2016;23(4):1434–43.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank REVA University and Ganpat University for providing support for this review. Moreover, Sudarshan Singh would like to acknowledge Chiang Mai University, Chiang Mai Thailand, for partial support.

Funding

This work was partially supported by Chiang Mai University.

Author information

Authors and Affiliations

Authors

Contributions

NSK, GV, CY, AP, SP, JK, PM, AP, and SS: writing and editing, SS: conceptualization, validation, editing of final draft, supervision. BGP: supervision and formal analysis.

Corresponding authors

Correspondence to Sudarshan Singh or Bhupendra Prajapati.

Ethics declarations

Ethics Approval

Not applicable.

Consent for Publication

Yes.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiran, N.S., Vaishnavi, G., Singh, S. et al. Biomaterials Comprising Implantable and Dermal Drug Delivery Targeting Brain in Management of Alzheimer’s Disease: A Review. Regen. Eng. Transl. Med. (2024). https://doi.org/10.1007/s40883-024-00340-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40883-024-00340-6

Keywords

Navigation