Skip to main content
Log in

Biopolymer-based nano-formulations for mitigation of ocular infections: a review

  • REVIEW PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Ocular infirmities significantly influence a person’s routine process by impairing vision to the point of blindness. Effective ocular drug administration with significant bioavailability is challenging due to physiology and defensive mechanisms, which is majorly due to inadequate epithelial permeability and quick removal of the drug from the eye after administration. Due to the numerous restrictions on drug distribution across the blood–retinal barrier, conventional medicines cannot provide definitive therapy for all ocular illnesses, making it a significant clinical issue. However, significant breakthroughs in the management of ocular disorders have been made possible by the use of biopolymeric drug transport with nanoscience. The use of biopolymers in ophthalmic medications has produced several positive effects, including safety, prolonged retention times, improved bioavailability, and controlled release via adhesion to epithelia. Moreover, therapeutic implementation of nanostructure materials, from diagnosis to therapy, has also received significant attention. This evolving biopolymer-based nanoscale drug delivery system has enhanced the drug's ability to pass through various ocular barriers with improvement in bioavailability. Among other beneficial characteristics, biodegradable polymers offer amended retention period and extended release. This review emphasizes the various biopolymer-based fabricated nano-formulations used to mitigate ocular infection.

Graphical Abstract

Biopolymer-based nano-formulations for targeted delivery of drugs against ocular infections

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lynch CR, Kondiah PPD, Choonara YE, du Toit LC, Ally N, Pillay V (2020) Hydrogel biomaterials for application in ocular drug delivery. Front Bioeng Biotechnol 8:228

    PubMed  PubMed Central  Google Scholar 

  2. Ameeduzzafar, Imam SS, Abbas Bukhari SN, Ahmad J, Ali A (2018) Formulation and optimization of levofloxacin loaded chitosan nanoparticle for ocular delivery: in-vitro characterization, ocular tolerance, and antibacterial activity. Int J Biol Macromol 108:650–659

  3. Gómez-Ballesteros M, López-Cano JJ, Bravo-Osuna I, Herrero-Vanrell R, Molina-Martínez IT (2019) Osmoprotectants in hybrid liposome/hpmc systems as potential glaucoma treatment. Polymers 11(6)

  4. Paliwal H, Prajapati BG, Srichana T, Singh S, Patel RJ (2023) Novel approaches in the drug development and delivery systems for age-related macular degeneration. Life 13(2):568

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Vu HT, Keeffe JE, McCarty CA, Taylor HR (2005) Impact of unilateral and bilateral vision loss on quality of life. Br J Ophthalmol 89(3):360–363

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Ludwig A (2005) The use of mucoadhesive polymers in ocular drug delivery. Adv Drug Deliv Rev 57(11):1595–1639

    CAS  PubMed  Google Scholar 

  7. Flaxman SR, Bourne RRA, Resnikoff S, Ackland P, Braithwaite T, Cicinelli MV et al (2017) Global causes of blindness and distance vision impairment 1990–2020: a systematic review and meta-analysis. Lancet Glob Health 5(12):e1221–e1234

    PubMed  Google Scholar 

  8. Kim YC, Chiang B, Wu X, Prausnitz MR (2014) Ocular delivery of macromolecules. J Control Release 190:172–181

    CAS  PubMed  Google Scholar 

  9. Urtti A (2006) Challenges and obstacles of ocular pharmacokinetics and drug delivery. Adv Drug Deliv Rev 58(11):1131–1135

    CAS  PubMed  Google Scholar 

  10. Weng Y, Liu J, Jin S, Guo W, Liang X, Hu Z (2017) Nanotechnology-based strategies for the treatment of ocular disease. Acta Pharm Sin B 7(3):281–291

    PubMed  Google Scholar 

  11. Khiev D, Mohamed ZA, Vichare R, Paulson R, Bhatia S, Mohapatra S et al (2021) Emerging nano-formulations and nanomedicines applications for ocular drug delivery. Nanomaterials (Basel, Switzerland) 11(1)

  12. Wakshull E, Quarmby V, Mahler HC, Rivers H, Jere D, Ramos M et al (2017) Advancements in understanding immunogenicity of biotherapeutics in the intraocular space. AAPS J 19(6):1656–1668

    PubMed  Google Scholar 

  13. Ramsay E, Del Amo EM, Toropainen E, Tengvall-Unadike U, Ranta VP, Urtti A et al (2018) Corneal and conjunctival drug permeability: systematic comparison and pharmacokinetic impact in the eye. Eur J Pharm Sci 119:83–89

    CAS  PubMed  Google Scholar 

  14. Akpek EK, Gottsch JD (2003) Immune defense at the ocular surface. Eye (Lond) 17(8):949–956

    CAS  PubMed  Google Scholar 

  15. Huang D, Chen YS, Rupenthal ID (2019) Corrigendum to “Overcoming ocular drug delivery barriers through the use of physical forces.” Adv Drug Deliv Rev 139:157

    CAS  PubMed  Google Scholar 

  16. Achouri D, Alhanout K, Piccerelle P, Andrieu V (2013) Recent advances in ocular drug delivery. Drug Dev Ind Pharm 39(11):1599–1617

    CAS  PubMed  Google Scholar 

  17. Mandal A, Bisht R, Rupenthal ID, Mitra AK (2017) Polymeric micelles for ocular drug delivery: from structural frameworks to recent preclinical studies. J Control Release 248:96–116

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Eljarrat-Binstock E, Pe’er J, Domb AJ (2010) New techniques for drug delivery to the posterior eye segment. Pharm Res 27(4):530–543

    CAS  PubMed  Google Scholar 

  19. Gaudana R, Ananthula HK, Parenky A, Mitra AK (2010) Ocular drug delivery. AAPS J 12(3):348–360

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Chakraborty M, Banerjee D, Mukherjee S, Karati D (2022) Exploring the advancement of polymer-based nano-formulations for ocular drug delivery systems: an explicative review. Polym Bull

  21. Li G, Zhang Y-Y, Guo H, Huang L, Lu H, Lin X et al (2018) Epitaxial growth and physical properties of 2D materials beyond graphene: from monatomic materials to binary compounds. Chem Soc Rev 47(16):6073–6100

    CAS  PubMed  Google Scholar 

  22. Gorantla S, Singhvi G, Rapalli VK, Waghule T, Dubey SK, Saha RN (2020) Targeted drug-delivery systems in the treatment of rheumatoid arthritis: recent advancement and clinical status. Ther Deliv 11(4):269–284

    CAS  PubMed  Google Scholar 

  23. Tamilvanan S, Benita S (2004) The potential of lipid emulsion for ocular delivery of lipophilic drugs. Eur J Pharm Biopharm 58(2):357–368

    CAS  PubMed  Google Scholar 

  24. Peterson GI, Dobrynin AV, Becker ML (2017) Biodegradable shape memory polymers in medicine. Adv Healthc Mater 6(21)

  25. Prajapati BG, Patel MM. Chitosan/PVA bioadhesive ocular inserts of ofloxacin.

  26. Bawa P, Pillay V, Choonara YE, du Toit LC (2009) Stimuli-responsive polymers and their applications in drug delivery. Biomed Mater (Bristol, England) 4(2):022001

    Google Scholar 

  27. Du Toit LC, Carmichael T, Govender T, Kumar P, Choonara YE, Pillay V (2014) In vitro, in vivo, and in silico evaluation of the bioresponsive behavior of an intelligent intraocular implant. Pharm Res 31:607–634

    PubMed  Google Scholar 

  28. Karati D (2022) A concise review on bio-responsive polymers in targeted drug delivery system. Polym Bull

  29. Quiñones JP, Peniche H, Peniche C (2018) Chitosan based self-assembled nanoparticles in drug delivery. Polymers 10(3)

  30. Nwabor OF, Singh S, Paosen S, Vongkamjan K, Voravuthikunchai SP (2020) Enhancement of food shelf life with polyvinyl alcohol-chitosan nanocomposite films from bioactive Eucalyptus leaf extracts. Food Biosci 36:100609

    CAS  Google Scholar 

  31. Singh S, Nwabor OF, Syukri DM, Voravuthikunchai SP (2021) Chitosan-poly(vinyl alcohol) intelligent films fortified with anthocyanins isolated from Clitoria ternatea and Carissa carandas for monitoring beverage freshness. Int J Biol Macromol 182:1015–1025

    CAS  PubMed  Google Scholar 

  32. Eze FN, Jayeoye TJ, Singh S (2022) Fabrication of intelligent pH-sensing films with antioxidant potential for monitoring shrimp freshness via the fortification of chitosan matrix with broken Riceberry phenolic extract. Food Chem 366:130574

    CAS  PubMed  Google Scholar 

  33. Mohite P, Shah SR, Singh S, Rajput T, Munde S, Ade N et al (2023) Chitosan and chito-oligosaccharide: a versatile biopolymer with endless grafting possibilities for multifarious applications. Front Bioeng Biotechnol 11

  34. Mohite P, Rahayu P, Munde S, Ade N, Chidrawar VR, Singh S et al (2023) Chitosan-based hydrogel in the management of dermal infections: a review. Gels 9(7):594

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Al-Rooqi MM, Hassan MM, Moussa Z, Obaid RJ, Suman NH, Wagner MH et al (2022) Advancement of chitin and chitosan as promising biomaterials. J Saudi Chem Soc 26(6):101561

    CAS  Google Scholar 

  36. Lin S-B, Lin Y-C, Chen H-H (2009) Low molecular weight chitosan prepared with the aid of cellulase, lysozyme and chitinase: characterisation and antibacterial activity. Food Chem 116(1):47–53

    CAS  Google Scholar 

  37. Xia W, Liu P, Zhang J, Chen J (2011) Biological activities of chitosan and chitooligosaccharides. Food Hydrocoll 25(2):170–179

    CAS  Google Scholar 

  38. Camber O, Edman P (1989) Sodium hyaluronate as an ophthalmic vehicle: some factors governing its effect on the ocular absorption of pilocarpine. Curr Eye Res 8(6):563–567

    CAS  PubMed  Google Scholar 

  39. Su W-Y, Chen K-H, Chen Y-C, Lee Y-H, Tseng C-L, Lin F-H (2011) An injectable oxidated hyaluronic acid/adipic acid dihydrazide hydrogel as a vitreous substitute. J Biomater Sci Polym Ed 22(13):1777–1797

    CAS  PubMed  Google Scholar 

  40. Prajapati BG, Patel MM. Crosslinked chitosan gel for local drug delivery of clotrimazole

  41. Verma D, Sharma SK (2021) Recent advances in guar gum based drug delivery systems and their administrative routes. Int J Biol Macromol 181:653–671

    CAS  PubMed  Google Scholar 

  42. Mohammed MA, Syeda JTM, Wasan KM, Wasan EK (2017) An overview of chitosan nanoparticles and its application in non-parenteral drug delivery. Pharmaceutics 9(4)

  43. Gratieri T, Gelfuso GM, Rocha EM, Sarmento VH, de Freitas O, Lopez RF (2010) A poloxamer/chitosan in situ forming gel with prolonged retention time for ocular delivery. Eur J Pharm Biopharm 75(2):186–193

    CAS  PubMed  Google Scholar 

  44. Cheng YH, Hung KH, Tsai TH, Lee CJ, Ku RY, Chiu AW et al (2014) Sustained delivery of latanoprost by thermosensitive chitosan-gelatin-based hydrogel for controlling ocular hypertension. Acta Biomater 10(10):4360–4366

    CAS  PubMed  Google Scholar 

  45. Song Y, Nagai N, Saijo S, Kaji H, Nishizawa M, Abe T (2018) In situ formation of injectable chitosan-gelatin hydrogels through double crosslinking for sustained intraocular drug delivery. Mater Sci Eng C 88:1–12

    CAS  Google Scholar 

  46. Cunha PL, Paula RC, Feitosa JP (2007) Purification of guar gum for biological applications. Int J Biol Macromol 41(3):324–331

    CAS  PubMed  Google Scholar 

  47. Kogan G, Soltés L, Stern R, Gemeiner P (2007) Hyaluronic acid: a natural biopolymer with a broad range of biomedical and industrial applications. Biotechnol Lett 29(1):17–25

    CAS  PubMed  Google Scholar 

  48. Pahuja P, Arora S, Pawar P (2012) Ocular drug delivery system: a reference to natural polymers. Expert Opin Drug Deliv 9(7):837–861

    CAS  PubMed  Google Scholar 

  49. Cheng Y, Brown KM, Prud’homme RK (2002) Characterization and intermolecular interactions of hydroxypropyl guar solutions. Biomacromol 3(3):456–461

    CAS  Google Scholar 

  50. Shi Q, Anishiya Chella Daisy ER, GeqiangYang, Zhang J, Mickymaray S, Alfaiz F et al (2021) Multifeatured guar gum armed drug delivery system for the delivery of ofloxacin drug to treat ophthalmic dieases. Arab J Chem 4(5):103118

  51. Sze JH, Brownlie JC, Love CA (2016) Biotechnological production of hyaluronic acid: a mini review. 3 Biotech 6(1):67

  52. de la Fuente M, Seijo B, Alonso MJ (2008) Bioadhesive hyaluronan-chitosan nanoparticles can transport genes across the ocular mucosa and transfect ocular tissue. Gene Ther 15(9):668–676

    PubMed  Google Scholar 

  53. Zhang X, Wei D, Xu Y, Zhu Q (2021) Hyaluronic acid in ocular drug delivery. Carbohyd Polym 264:118006

    CAS  Google Scholar 

  54. Das A, Ringu T, Ghosh S, Pramanik N (2023) A comprehensive review on recent advances in preparation, physicochemical characterization, and bioengineering applications of biopolymers. Polym Bull 80(7):7247–7312

    CAS  Google Scholar 

  55. Willoughby CE, Batterbury M, Kaye SB (2002) Collagen corneal shields. Surv Ophthalmol 47(2):174–182

    CAS  PubMed  Google Scholar 

  56. Huang ZP, Wu JA (1992) An experimental study of gentamycin delivery into cornea and aqueous humor from the collagen corneal shield. Zhonghua yan ke za zhi. Chin J Ophthalmol 28(3):170–172

  57. Mbese Z, Alven S, Aderibigbe BA (2021) Collagen-based nanofibers for skin regeneration and wound dressing applications. Polymers 13(24)

  58. Lynch CR, Kondiah PPD, Choonara YE, du Toit LC, Ally N, Pillay V (2020) Hydrogel biomaterials for application in ocular drug delivery. 8

  59. Liu Z, Li J, Nie S, Liu H, Ding P, Pan W (2006) Study of an alginate/HPMC-based in situ gelling ophthalmic delivery system for gatifloxacin. Int J Pharm 315(1–2):12–17

    CAS  PubMed  Google Scholar 

  60. Prajapati VD, Jani GK, Moradiya NG, Randeria NP, Nagar BJ (2013) Locust bean gum: a versatile biopolymer. Carbohyd Polym 94(2):814–821

    CAS  Google Scholar 

  61. Lin S-L, Pramoda MK (1979) Locust bean gum therapeutic compositions. Google Patents

  62. Sandri G, Bonferoni MC, Chetoni P, Rossi S, Ferrari F, Ronchi C et al (2006) Ophthalmic delivery systems based on drug-polymer-polymer ionic ternary interaction: in vitro and in vivo characterization. Eur J Pharm Biopharm 62(1):59–69

    CAS  PubMed  Google Scholar 

  63. Sharma N, Deshpande RD, Sharma D, Sharma RK (2016) Development of locust bean gum and xanthan gum based biodegradable microparticles of celecoxib using a central composite design and its evaluation. Ind Crops Prod 82:161–170

    CAS  Google Scholar 

  64. Turquois T, Rochas C, Taravel FR (1992) Rheological studies of synergistic kappa carrageenan-carob galactomannan gels. Carbohyd Polym 17(4):263–268

    CAS  Google Scholar 

  65. Hathout RM, Omran MK (2016) Gelatin-based particulate systems in ocular drug delivery. Pharm Dev Technol 21(3):379–386

    CAS  PubMed  Google Scholar 

  66. Tseng C-L, Chen K-H, Su W-Y, Lee Y-H, Wu C-C, Lin F-H (2013) Cationic gelatin nanoparticles for drug delivery to the ocular surface: in vitro and in vivo evaluation. J Nanomater 2013:238351

    Google Scholar 

  67. Hasani M, Yazdanpanah S (2020) The effects of gum cordia on the physicochemical, textural, rheological, microstructural, and sensorial properties of apple jelly. J Food Qual 2020:8818960

    Google Scholar 

  68. Mukherjee B, Dinda SC, Barik BB (2008) Gum cordia: a novel matrix forming material for enteric resistant and sustained drug delivery: a technical note. AAPS PharmSciTech 9(1):330–333

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Dinda SC, Mukharjee B (2009) Gum cordia—a new tablet binder and emulsifier. Acta Pharmaceutica Sciencia 51(2)

  70. Yadav M, Ahuja M (2010) Preparation and evaluation of nanoparticles of gum cordia, an anionic polysaccharide for ophthalmic delivery. Carbohyd Polym 81(4):871–877

    CAS  Google Scholar 

  71. Batul R, Tamanna T, Khaliq A, Yu A (2017) Recent progress in the biomedical applications of polydopamine nanostructures. Biomater Sci 5(7):1204–1229

    CAS  PubMed  Google Scholar 

  72. Liu S, Zhao X, Tang J, Han Y, Lin Q (2021) Drug-eluting hydrophilic coating modification of intraocular lens via facile dopamine self-polymerization for posterior capsular opacification prevention. ACS Biomater Sci Eng 7(3):1065–1073

    CAS  PubMed  Google Scholar 

  73. Jiang P, Choi A, Swindle-Reilly KE (2020) Controlled release of anti-VEGF by redox-responsive polydopamine nanoparticles. Nanoscale 12(33):17298–17311

    CAS  PubMed  Google Scholar 

  74. Soni V, Pandey V, Tiwari R, Asati S, Tekade RK (2019) Chapter 13—design and evaluation of ophthalmic delivery formulations. In: Tekade RK (ed) Basic fundamentals of drug delivery. Academic Press, pp 473–538

  75. Dubashynskaya N, Poshina D, Raik S, Urtti A, Skorik YA (2020) Polysaccharides in ocular drug delivery. Pharmaceutics 12(1)

  76. Sharma R, Malviya R, Singh S, Prajapati B (2023) A critical review on classified excipient sodium-alginate-based hydrogels: modification, characterization, and application in soft tissue engineering. Gels 9(5):430

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Patel RP, Patel GK, Patel N, Singh S, Chittasupho C (2023) Alginate nanoparticles: a potential drug carrier in tuberculosis treatment. In: Shegokar R, Pathak Y (eds) Tubercular drug delivery systems: advances in treatment of infectious diseases. Springer, Cham, pp 207–234

    Google Scholar 

  78. Singh S, Chunglok W, Nwabor OF, Chulrik W, Jansakun C, Bhoopong P (2023) Porous Biodegradable sodium alginate composite fortified with hibiscus sabdariffa L. calyx extract for the multifarious biological applications and extension of climacteric fruit shelf-life. J Polym Environ 31(3):922–938

    CAS  Google Scholar 

  79. Singh S, Chunglok W, Nwabor OF, Ushir YV, Singh S, Panpipat W (2022) Hydrophilic biopolymer matrix antibacterial peel-off facial mask functionalized with biogenic nanostructured material for cosmeceutical applications. J Polym Environ 30(3):938–953

    CAS  Google Scholar 

  80. Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37(1):106–126

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Wong FSY, Tsang KK, Chan BP, Lo ACY (2023) Both non-coated and polyelectrolytically-coated intraocular collagen-alginate composite gels enhanced photoreceptor survival in retinal degeneration. Biomaterials 293:121948

    CAS  PubMed  Google Scholar 

  82. Fathalla Z, Fatease AA, Abdelkader H (2023) Formulation and in-vitro/ex-vivo characterization of pregelled hybrid alginate and chitosan microparticles for ocular delivery of ketorolac tromethamine. Polymers 15(13):2773

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Dubashynskaya N, Poshina D, Raik S, Urtti A, Skorik YA (2019) Polysaccharides in ocular drug delivery. Pharmaceutics 12(1)

  84. Sung YK, Kim SW (2020) Recent advances in polymeric drug delivery systems. Biomater Res 24:12

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Khan R, Khan MH (2013) Use of collagen as a biomaterial: an update. J Indian Soc Periodontol 17(4):539–542

    PubMed  PubMed Central  Google Scholar 

  86. Rose JB, Pacelli S, Haj AJE, Dua HS, Hopkinson A, White LJ et al (2014) Gelatin-based materials in ocular tissue engineering. Materials 7(4):3106–3135

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Göttel B, de Souza e Silva JM, Santos de Oliveira C, Syrowatka F, Fiorentzis M, Viestenz A et al (2019) Electrospun nanofibers—a promising solid in-situ gelling alternative for ocular drug delivery. Eur J Pharm Biopharm 146:125–32

  88. Ciolacu DE, Nicu R, Ciolacu F (2020) Cellulose-based hydrogels as sustained drug-delivery systems. Materials 13(22)

  89. Wani SUD, Masoodi MH, Gautam SP, Shivakumar HG, Alshehri S, Ghoneim MM et al (2022) Promising role of silk-based biomaterials for ocular-based drug delivery and tissue engineering. Polymers 14(24)

  90. Pardeshi CV, Kothawade RV, Markad AR, Pardeshi SR, Kulkarni AD, Chaudhari PJ et al (2023) Sulfobutylether-β-cyclodextrin: a functional biopolymer for drug delivery applications. Carbohydr Polym 301(Pt B):120347

    CAS  PubMed  Google Scholar 

  91. Baino F, Kargozar S (2020) Regulation of the ocular cell/tissue response by implantable biomaterials and drug delivery systems. Bioengineering 7(3)

  92. Maulvi FA, Soni TG, Shah DO (2016) A review on therapeutic contact lenses for ocular drug delivery. Drug Deliv 23(8):3017–3026

    CAS  PubMed  Google Scholar 

  93. Halasz K, Kelly SJ, Iqbal MT, Pathak Y, Sutariya V (2019) Micro/nanoparticle delivery systems for ocular diseases. Assay Drug Dev Technol 17(4):152–166

    CAS  PubMed  Google Scholar 

  94. Esteban-Pérez S, Bravo-Osuna I, Andrés-Guerrero V, Molina-Martínez IT, Herrero-Vanrell R (2020) Trojan microparticles potential for ophthalmic drug delivery. Curr Med Chem 27(4):570–582

    PubMed  Google Scholar 

  95. Elsaid N, Jackson TL, Elsaid Z, Alqathama A, Somavarapu S (2016) PLGA microparticles entrapping chitosan-based nanoparticles for the ocular delivery of ranibizumab. Mol Pharm 13(9):2923–2940

    CAS  PubMed  Google Scholar 

  96. Gorantla S, Rapalli VK, Waghule T, Singh PP, Dubey SK, Saha RN et al (2020) Nanocarriers for ocular drug delivery: current status and translational opportunity. RSC Adv 10(46):27835–27855

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Bravo-Osuna I, Andrés-Guerrero V, Pastoriza Abal P, Molina-Martínez IT, Herrero-Vanrell R (2016) Pharmaceutical microscale and nanoscale approaches for efficient treatment of ocular diseases. Drug Deliv Transl Res 6(6):686–707

    CAS  PubMed  Google Scholar 

  98. Qamar Z, Qizilbash FF, Iqubal MK, Ali A, Narang JK, Ali J et al (2019) Nano-based drug delivery system: recent strategies for the treatment of ocular disease and future perspective. Recent Pat Drug Deliv Formul 13(4):246–254

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Chaiyasan W, Srinivas SP, Tiyaboonchai W (2015) Crosslinked chitosan-dextran sulfate nanoparticle for improved topical ocular drug delivery. Mol Vis 21:1224–1234

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Khames A, Khaleel MA, El-Badawy MF, El-Nezhawy AOH (2019) Natamycin solid lipid nanoparticles—sustained ocular delivery system of higher corneal penetration against deep fungal keratitis: preparation and optimization. Int J Nanomed 14:2515–2531

    CAS  Google Scholar 

  101. Eid HM, Elkomy MH, El Menshawe SF, Salem HF (2019) Development, optimization, and in vitro/in vivo characterization of enhanced lipid nanoparticles for ocular delivery of ofloxacin: the influence of pegylation and chitosan coating. AAPS PharmSciTech 20(5):183

    PubMed  Google Scholar 

  102. Maxwell CJ, Soltisz AM, Rich WW, Choi A, Reilly MA, Swindle-Reilly KE (2022) Tunable alginate hydrogels as injectable drug delivery vehicles for optic neuropathy. J Biomed Mater Res Part A 110(10):1621–1635

    CAS  Google Scholar 

  103. Das S, Saha D, Majumdar S, Giri L (2022) Imaging methods for the assessment of a complex hydrogel as an ocular drug delivery system for glaucoma treatment: opportunities and challenges in preclinical evaluation. Mol Pharm 19(3):733–748

    CAS  PubMed  Google Scholar 

  104. Bashir S, Hina M, Iqbal J, Rajpar AH, Mujtaba MA, Alghamdi NA et al (2020) Fundamental concepts of hydrogels: synthesis, properties, and their applications. Polymers 12(11)

  105. Larrañeta E, Stewart S, Ervine M, Al-Kasasbeh R, Donnelly RF (2018) Hydrogels for hydrophobic drug delivery. classification, synthesis and applications. J Functl Biomater 9(1)

  106. Wang F, Song Y, Huang J, Wu B, Wang Y, Pang Y et al (2021) Lollipop-inspired multilayered drug delivery hydrogel for dual effective, long-term, and nir-defined glaucoma treatment. Macromol Biosci 21(11):e2100202

    PubMed  Google Scholar 

  107. Agarwal R, Iezhitsa I, Agarwal P, Abdul Nasir NA, Razali N, Alyautdin R et al (2016) Liposomes in topical ophthalmic drug delivery: an update. Drug Deliv 23(4):1075–1091

    CAS  PubMed  Google Scholar 

  108. Suyamud C, Phetdee C, Jaimalai T, Prangkio P (2021) Silk fibroin-coated liposomes as biomimetic nanocarrier for long-term release delivery system in cancer therapy. Molecules 26(16)

  109. Jacob S, Nair AB, Shah J (2020) Emerging role of nanosuspensions in drug delivery systems. Biomater Res 24(1):3

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Lin HR, Yu SP, Kuo CJ, Kao HJ, Lo YL, Lin YJ (2007) Pilocarpine-loaded chitosan-PAA nanosuspension for ophthalmic delivery. J Biomater Sci Polym Ed 18(2):205–221

    CAS  PubMed  Google Scholar 

  111. Wu XG, Xin M, Yang LN, Shi WY (2011) The biological characteristics and pharmacodynamics of a mycophenolate mofetil nanosuspension ophthalmic delivery system in rabbits. J Pharm Sci 100(4):1350–1361

    CAS  PubMed  Google Scholar 

  112. Abdelrahman AA, Salem HF, Khallaf RA, Ali AMA (2015) Modeling, optimization, and in vitro corneal permeation of chitosan-lomefloxacin HCl nanosuspension intended for ophthalmic delivery. J Pharm Innov 10(3):254–268

    Google Scholar 

  113. Heymanns AC, Albano MN, da Silveira MR, Muller SD, Petronilho FC, Gainski LD et al (2021) Macroscopic, biochemical and hystological evaluation of topical anti-inflammatory activity of Casearia sylvestris (Flacourtiaceae) in mice. J Ethnopharmacol 264:113139

    CAS  PubMed  Google Scholar 

  114. Russell S, Dewey D, Tegmark M (2015) Research priorities for robust and beneficial artificial intelligence. AI Mag 36(4):105–114

    Google Scholar 

  115. Hassanzadeh P, Atyabi F, Dinarvand R (2019) The significance of artificial intelligence in drug delivery system design. Adv Drug Deliv Rev 151–152:169–190

    PubMed  Google Scholar 

  116. Duch W, Setiono R, Zurada JM (2004) Computational intelligence methods for rule-based data understanding. Proc IEEE 92(5):771–805

    Google Scholar 

  117. Zarogoulidis P, Chatzaki E, Porpodis K, Domvri K, Hohenforst-Schmidt W, Goldberg EP et al (2012) Inhaled chemotherapy in lung cancer: future concept of nanomedicine. Int J Nanomed 7:1551–1572

    CAS  Google Scholar 

  118. Le TC, Mulet X, Burden FR, Winkler DA (2013) Predicting the complex phase behavior of self-assembling drug delivery nanoparticles. Mol Pharm 10(4):1368–1377

    CAS  PubMed  Google Scholar 

  119. Youshia J, Ali ME, Lamprecht A (2017) Artificial neural network based particle size prediction of polymeric nanoparticles. Eur J Pharm Biopharm 119:333–342

    CAS  PubMed  Google Scholar 

  120. Shalaby KS, Soliman ME, Casettari L, Bonacucina G, Cespi M, Palmieri GF et al (2014) Determination of factors controlling the particle size and entrapment efficiency of noscapine in PEG/PLA nanoparticles using artificial neural networks. Int J Nanomed 9:4953–4964

    CAS  Google Scholar 

  121. Husseini GA, Mjalli FS, Pitt WG, Abdel-Jabbar NM (2009) Using artificial neural networks and model predictive control to optimize acoustically assisted doxorubicin release from polymeric micelles. Technol Cancer Res Treat 8(6):479–488

    CAS  PubMed  Google Scholar 

  122. Chowhan A, Giri TK (2020) Polysaccharide as renewable responsive biopolymer for in situ gel in the delivery of drug through ocular route. Int J Biol Macromol 150:559–572

    CAS  PubMed  Google Scholar 

  123. Ibrahim ME-S, Isra HA, Islam AK, inventors; Zewail city of science and tech, assignee (2019) Ocular drug delivery system. GB patent GB 2570113 A. 2019 2018/01/10

  124. Andersson M, inventor; Andersson Mats Viscogel AB, assignee (2014) Chitosan composition. US patent US 8703924 B2. 2014 2008/10/30

  125. Willis T, Stone R, inventors; Eternatear INC, assignee (2020) Ophthalmic formulations providing durable ocular lubrication. WO patent WO 2020/123362 A1. 2019/12/09

  126. Korb Donald R, Brancewicz Chris J, inventors; Korb Donald R Brancewicz Chris J Ocular Res Of Boston INC, assignee (2015) Dry eye treatment. US patent US 9044388 B2. 2008/11/05

  127. Mackay John A, Wang WAN, inventors; Univ Southern California Mackay john andrew wang wan, assignee (2013) Controlled release of ocular biopharmaceuticals using bioresponsive protein polymers. WO patent WO 2013/016578 A2. 2013 2012/07/26

  128. Du Toit Lisa C, Pillay V, Choonara Yahya E, Govender T, Carmichael Trevor R, inventors; Univ Witwatersrand Jhb Du Toit Lisa Claire Pillay Viness Choonara Yahya Essop Govender Thirumala Carmichael Trevor Robin, assignee (2012) A drug delivery device. WO patent WO 2012/070027 A1. 2012 2011/11/28.

Download references

Acknowledgements

This work was partially supported by this work was partially supported by CMU Proactive Researcher Scheme (2023), Chiang Mai University, “Contract No. 933/2566” for Dr Sudarshan Singh. Moreover, Dr. Bhupendra Prajapati would like to acknowledge Ganpat University for providing facilities for this work. We are also thankful to Prof. Dr. Sagar Patel, Ganpat University, for his support in language correction.

Funding

This work was partially supported by CMU Proactive Researcher Scheme (2023), Chiang Mai University, “Contract No.933/2566.”

Author information

Authors and Affiliations

Authors

Contributions

DK and SM were involved in writing—original draft. SS and BGB were involved in reviewing. SS and BGP were involved in conceptualization, review, and editing. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Sudarshan Singh or Bhupendra G. Prajapati.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karati, D., Mukherjee, S., Singh, S. et al. Biopolymer-based nano-formulations for mitigation of ocular infections: a review. Polym. Bull. 81, 7631–7658 (2024). https://doi.org/10.1007/s00289-023-05095-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-05095-8

Keywords

Navigation