Skip to main content
Log in

Ultrasound-Derived Mechanical Stimulation of Alginate Hydrogels for Bone Repair: an In Vitro Study

  • Original Research
  • Published:
Regenerative Engineering and Translational Medicine Aims and scope Submit manuscript

Abstract

Purpose

Cell therapy is a new and evolving treatment for large-scale bone defects. Here, we describe a novel approach that combines hydrogel-based cell therapy with low-intensity pulsed ultrasound (LIPUS), an FDA-approved treatment for fracture repair.

Methods

Bone marrow–derived stromal cells (BMSCs) were encapsulated in RGD-peptide-coupled alginate hydrogels and mechanically stimulated using LIPUS-derived acoustic radiation force (ARF).

Results

Mechanical analysis of alginate hydrogels revealed a dependence on either alginate concentration or cross-linker concentration, revealing different ways to adjust the mechanical properties of the hydrogel. An optimal alginate and cross-linker concentration were found that allowed both robust cell proliferation and hydrogel mechanical stability. Cell proliferation was inversely proportional to hydrogel stiffness, suggesting that stiffer hydrogels were preventing full cell spreading and migration within the hydrogel. Cells encapsulated in hydrogels of optimal stiffness responded immediately after the onset of ARF by upregulating calcium, and shortly after upregulating cyclooxygenase-2 and prostaglandin E2, and later forming mineralized tissue in culture. Interestingly, cells seeded on top of hydrogels did not demonstrate the same calcium flux as encapsulated cells, suggesting that encapsulating the cells provided an additional mechanical stimulus. COX-2 and PGE2 data from cells encapsulated in hydrogels with no ARF showed a similar response to encapsulation alone.

Conclusion

These studies support the idea of combining cell therapy with LIPUS-derived ARF to enhance mineralized tissue formation.

Lay Summary

Ultrasound has been a tool available to clinicians for a long time, and for a wide range of applications, including bone repair. Here, we show that it can stimulate stem cells that have been encapsulated in hydrogels to differentiate into bone cells through mechanical stimulation. This work would allow a clinician to implant stem cells into a large bone defect and stimulate them using ultrasound to differentiate into bone cells and help these large defects heal more quickly. This stimulation would be done transdermally and non-invasively, allowing the defect to heal with minimal intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Meinel L, Karageorgiou V, Fajardo R, Snyder B, Shinde-Patil V, Zichner L, Kaplan D, Langer R, Vunjak-Novakovic G. Bone tissue engineering using human mesenchymal stem cells: effects of scaffold material and medium flow. Ann Biomed Eng. 2004;32(1):112–22.

    Article  Google Scholar 

  2. Amini AR, Laurencin CT, Nukavarapu SP. Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng. 2012;40(5):363–408.

    Article  Google Scholar 

  3. Murphy MP, Quarto N, Longaker MT, Wan DC. (*) Calvarial defects: cell-based reconstructive strategies in the murine model. Tissue Eng Part C Methods. 2017;23(12):971–81.

    Article  Google Scholar 

  4. Stewart S, Bryant SJ, Ahn J, Hankenson KD. Chapter 24 - Bone regeneration. In: Atala A, Allickson JG, editors. Translational Regenerative Medicine. Boston: Academic Press; 2015. p. 313–33.

    Chapter  Google Scholar 

  5. Zimmermann G, Moghaddam A. Allograft bone matrix versus synthetic bone graft substitutes. Injury. 2011;42(Suppl 2):S16–21.

    Article  Google Scholar 

  6. Parikh SN. Bone graft substitutes: past, present, future. J Postgrad Med. 2002;48(2):142–8.

    CAS  Google Scholar 

  7. Ibrahim A. 13 - 3D bioprinting bone. In: Thomas DJ, Jessop ZM, Whitaker IS, editors. 3D Bioprinting for Reconstructive Surgery. Woodhead Publishing; 2018. p. 245–75.

    Chapter  Google Scholar 

  8. He R, Chen J, Jiang J, Liu B, Liang D, Zhou W, Chen W, Wang Y. Synergies of accelerating differentiation of bone marrow mesenchymal stem cells induced by low intensity pulsed ultrasound, osteogenic and endothelial inductive agent, Artif. Cells, Nanomed. Biotechnol. 2019;47(1):673–83.

    CAS  Google Scholar 

  9. Wang Y, Peng W, Liu X, Zhu M, Sun T, Peng Q, Zeng Y, Feng B, Zhi W, Weng J, Wang J. Study of bilineage differentiation of human-bone-marrow-derived mesenchymal stem cells in oxidized sodium alginate/N-succinyl chitosan hydrogels and synergistic effects of RGD modification and low-intensity pulsed ultrasound. Acta Biomater. 2014;10(6):2518–28.

    Article  CAS  Google Scholar 

  10. Nguyen B-NB, Moriarty RA, Kamalitdinov T, Etheridge JM, Fisher JP. Collagen hydrogel scaffold promotes mesenchymal stem cell and endothelial cell coculture for bone tissue engineering. J Biomed Mater Res A. 2017;105(4):1123–31.

    Article  CAS  Google Scholar 

  11. Zhou X, Castro NJ, Zhu W, Cui H, Aliabouzar M, Sarkar K, Zhang LG. Improved human bone marrow mesenchymal stem cell osteogenesis in 3D bioprinted tissue scaffolds with low intensity pulsed ultrasound stimulation. Sci Rep. 2016;6(1):32876.

    Article  CAS  Google Scholar 

  12. Maisani M, Ziane S, Ehret C, Levesque L, Siadous R, Le Meins J-F, Chevallier P, Barthélémy P, De Oliveira H, Amédée J, Mantovani D, Chassande O. A new composite hydrogel combining the biological properties of collagen with the mechanical properties of a supramolecular scaffold for bone tissue engineering. J Tissue Eng Regen Med. 2018;12(3):e1489–500.

    Article  CAS  Google Scholar 

  13. Roseti L, Parisi V, Petretta M, Cavallo C, Desando G, Bartolotti I, Grigolo B. Scaffolds for bone tissue engineering: state of the art and new perspectives. Mater Sci Eng C. 2017;78:1246–62.

    Article  CAS  Google Scholar 

  14. Liu M, Zeng X, Ma C, Yi H, Ali Z, Mou X, Li S, Deng Y, He N. Injectable hydrogels for cartilage and bone tissue engineering. Bone Research. 2017;5(1):17014.

    Article  CAS  Google Scholar 

  15. Arrighi N. 3 - Stem cells at the core of cell therapy. In: Arrighi N, editor. Stem Cells. Elsevier; 2018. p. 73–100.

    Chapter  Google Scholar 

  16. Carson CT, Emre N, McIntyre C, Fong TC. 3.36 - Cellular therapies. In: Moo-Young M, editor. Comprehensive Biotechnology (Third Edition). Oxford: Pergamon; 2011. p. 446–59.

    Chapter  Google Scholar 

  17. Rothrauff BB, Pirosa A, Lin H, Sohn J, Langhans MT, Tuan RS. Chapter 54 - Stem cell therapy for musculoskeletal diseases. In: Atala A, Lanza R, Mikos AG, Nerem R, editors. Principles of Regenerative Medicine (Third Edition). Boston: Academic Press; 2019. p. 953–70.

    Chapter  Google Scholar 

  18. Veronick J, Assanah F, Nair LS, Vyas V, Huey B, Khan Y. The effect of acoustic radiation force on osteoblasts in cell/hydrogel constructs for bone repair. Exp Biol Med. 2016;241(10):1149–56.

    Article  CAS  Google Scholar 

  19. Veronick JA, Assanah F, Piscopo N, Kutes Y, Vyas V, Nair LS, Huey BD, Khan Y. Mechanically loading cell/hydrogel constructs with low-intensity pulsed ultrasound for bone repair. Tissue Eng Part A. 2018;24(3-4):254–63.

    Article  CAS  Google Scholar 

  20. Assanah F, Khan Y. Cell responses to physical forces, and how they inform the design of tissue-engineered constructs for bone repair: a review. J Mater Sci. 2018;53(8):5618–40.

    Article  CAS  Google Scholar 

  21. Lee DA, Knight MM, Campbell JJ, Bader DL. Stem cell mechanobiology. J Cell Biochem. 2011;112(1):1–9.

    Article  CAS  Google Scholar 

  22. MacQueen L, Sun Y, Simmons CA. Mesenchymal stem cell mechanobiology and emerging experimental platforms. J R Soc Interface. 2013;10(84):20130179.

    Article  Google Scholar 

  23. Huang CH, Chen MH, Young TH, Jeng JH, Chen YJ. Interactive effects of mechanical stretching and extracellular matrix proteins on initiating osteogenic differentiation of human mesenchymal stem cells. J Cell Biochem. 2009;108(6):1263–73.

    Article  CAS  Google Scholar 

  24. Klein-Nulend J, Burger EH, Semeins CM, Raisz LG, Pilbeam CC. Pulsating fluid flow stimulates prostaglandin release and inducible prostaglandin G/H synthase mRNA expression in primary mouse bone cells. J Bone Miner Res. 1997;12(1):45–51.

    Article  CAS  Google Scholar 

  25. Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126(4):677–89.

    Article  CAS  Google Scholar 

  26. Sun M, Chi G, Li P, Lv S, Xu J, Xu Z, Xia Y, Tan Y, Xu J, Li L, Li Y. Effects of matrix stiffness on the morphology, adhesion, proliferation and osteogenic differentiation of mesenchymal stem cells. Int J Med Sci. 2018;15(3):257–68.

    Article  CAS  Google Scholar 

  27. Lv H, Li L, Sun M, Zhang Y, Chen L, Rong Y, Li Y. Mechanism of regulation of stem cell differentiation by matrix stiffness. Stem Cell Res Ther. 2015;6(1):103.

    Article  Google Scholar 

  28. Pal P, Nguyen QC, Benton AH, Marquart ME, Janorkar AV. Drug-loaded elastin-like polypeptide–collagen hydrogels with high modulus for bone tissue engineering. Macromol Biosci. 2019;19(9):1900142.

    Article  Google Scholar 

  29. Assanah F, Grassie K, Anderson H, Xin X, Rowe D, Khan Y. Ultrasound-derived mechanical stimulation of cell-laden collagen hydrogels for bone repair. J Biomed Mater Res A. 2023;111(8):1200–15.

    Article  CAS  Google Scholar 

  30. Duan P, Kandemir N, Wang J, Chen J. Rheological characterization of alginate based hydrogels for tissue engineering. MRS Advances. 2017;2(24):1309–14.

    Article  CAS  Google Scholar 

  31. Campbell JJ, Bader DL, Lee DA. Mechanical loading modulates intracellular calcium signaling in human mesenchymal stem cells. J Appl Biomater Biomech. 2008;6(1):9–15.

    CAS  Google Scholar 

  32. Guo G, Ma Y, Guo Y, Zhang C, Guo X, Tu J, Yu ACH, Wu J, Zhang D. Enhanced porosity and permeability of three-dimensional alginate scaffolds via acoustic microstreaming induced by low-intensity pulsed ultrasound. Ultrason Sonochem. 2017;37:279–85.

    Article  CAS  Google Scholar 

  33. Guo G, Lu L, Ji H, Ma Y, Dong R, Tu J, Guo X, Qiu Y, Wu J, Zhang D. Low intensity pulse ultrasound stimulate chondrocytes growth in a 3-D alginate scaffold through improved porosity and permeability. Ultrasonics. 2015;58:43–52.

    Article  CAS  Google Scholar 

  34. Lutolf MP, Lauer-Fields JL, Schmoekel HG, Metters AT, Weber FE, Fields GB, Hubbell JA. Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. Proc Natl Acad Sci. 2003;100(9):5413–8.

    Article  CAS  Google Scholar 

  35. Wells R. The role of matrix stiffness in regulating cell behavior. Hepatology. 2008;47:1394–400.

    Article  CAS  Google Scholar 

  36. Bott K, Upton Z, Schrobback K, Ehrbar M, Hubbell J, Lutolf M, Rizzi S. The effect of matrix characteristics on fibroblast proliferation in 3D gels. Biomaterials. 2010;31:8454–64.

    Article  CAS  Google Scholar 

  37. Anamizu M, Tabata Y. Design of injectable hydrogels of gelatin and alginate with ferric ions for cell transplantation. Acta Biomater. 2019;100:184–90.

    Article  CAS  Google Scholar 

  38. Rowley JA, Madlambayan G, Mooney DJ. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials. 1999;20(1):45–53.

    Article  CAS  Google Scholar 

  39. Sarker B, Rompf J, Silva R, Lang N, Detsch R, Kaschta J, Fabry B, Boccaccini AR. Alginate-based hydrogels with improved adhesive properties for cell encapsulation. Int J Biol Macromol. 2015;78:72–8.

    Article  CAS  Google Scholar 

  40. You L, Cowin SC, Schaffler MB, Weinbaum S. A model for strain amplification in the actin cytoskeleton of osteocytes due to fluid drag on pericellular matrix. J Biomech. 2001;34(11):1375–86.

    Article  CAS  Google Scholar 

  41. Orr AW, Helmke BP, Blackman BR, Schwartz MA. Mechanisms of mechanotransduction. Dev Cell. 2006;10(1):11–20.

    Article  CAS  Google Scholar 

  42. Chen T, Buckley M, Cohen I, Bonassar L, Awad HA. Insights into interstitial flow, shear stress, and mass transport effects on ECM heterogeneity in bioreactor-cultivated engineered cartilage hydrogels. Biomech Model Mechanobiol. 2012;11(5):689–702.

    Article  Google Scholar 

  43. Hung CT, Allen FD, Pollack SR, Brighton CT. Intracellular Ca2+ stores and extracellular Ca2+ are required in the real-time Ca2+ response of bone cells experiencing fluid flow. J Biomech. 1996;29(11):1411–7.

    Article  CAS  Google Scholar 

  44. Yoon CW, Jung H, Goo K, Moon S, Koo KM, Lee NS, Weitz AC, Shung KK. Low-intensity ultrasound modulates Ca(2+) dynamics in human mesenchymal stem cells via connexin 43 hemichannel. Ann Biomed Eng. 2018;46(1):48–59.

    Article  Google Scholar 

  45. Zhang S, Cheng J, Qin Y-X. Mechanobiological modulation of cytoskeleton and calcium influx in osteoblastic cells by short-term focused acoustic radiation force. PloS One. 2012;7(6):e38343.

    Article  CAS  Google Scholar 

  46. Li YJ, Batra NN, You L, Meier SC, Coe IA, Yellowley CE, Jacobs CR. Oscillatory fluid flow affects human marrow stromal cell proliferation and differentiation. J Orthop Res. 2004;22(6):1283–9.

    Article  CAS  Google Scholar 

  47. Jacobs CR, Yellowley CE, Davis BR, Zhou Z, Cimbala JM, Donahue HJ. Differential effect of steady versus oscillating flow on bone cells. J Biomech. 1998;31(11):969–76.

    Article  CAS  Google Scholar 

  48. Wenfu Z, Xie Y, Zhang W, Wang D, Wanshun M, Wang Z, Jiang X. Fluid flow stress induced contraction and re-spread of mesenchymal stem cells: a microfluidic study. Integr Biol. 2012;4:1102–11.

    Article  Google Scholar 

  49. Reich K, Frangos JA. Effect of flow on prostaglandin E2 and inositol trisphosphate levels in osteoblasts. Am J Physiol. 1991;261:C428–32.

    Article  CAS  Google Scholar 

  50. Nauman E, Satcher R, Keaveny T, Halloran B, Bikle D. Osteoblasts respond to pulsatile fluid flow with short-term increases in PGE2 but no change in mineralization. J Appl Physiol. 1985;90(2001):1849–54.

    Google Scholar 

  51. Donahue T, Haut T, Yellowley CE, Donahue H, Jacobs C. Mechanosensitivity of bone cells to oscillating fluid flow induced shear stress may be modulated by chemotransport. J Biomech. 2003;36:1363–71.

    Article  Google Scholar 

  52. Mullender M, El Haj AJ, Yang Y, van Duin MA, Burger EH, Klein-Nulend J. Mechanotransduction of bone cellsin vitro: mechanobiology of bone tissue. Med Biol Eng Comput. 2004;42(1):14–21.

    Article  CAS  Google Scholar 

  53. Kokubu T, Matsui N, Fujioka H, Tsunoda M, Mizuno K. Low intensity pulsed ultrasound exposure increases prostaglandin E2 production via the induction of cyclooxygenase-2 mRNA in mouse osteoblasts. Biochem Biophys Res Commun. 1999;256(2):284–7.

    Article  CAS  Google Scholar 

  54. Li JG, Chang WH, Lin JC, Sun JS. Optimum intensities of ultrasound for PGE(2) secretion and growth of osteoblasts. Ultrasound Med Biol. 2002;28(5):683–90.

    Article  Google Scholar 

  55. Li J, Chang W, Lin C-A, Sun J-S. Optimum intensities of ultrasound for PGE2 secretion and growth of osteoblasts. Ultrasound Med Biol. 2002;28:683–90.

    Article  Google Scholar 

  56. Tsai CL, Chang WH, Liu TK, Song GM. Ultrasound can affect bone healing both locally and systemically. Chin J Physiol. 1991;34(2):213–22.

    CAS  Google Scholar 

  57. Harle J, Salih V, Mayia F, Knowles JC, Olsen I. Effects of ultrasound on the growth and function of bone and periodontal ligament cells in vitro. Ultrasound Med Biol. 2001;27(4):579–86.

    Article  CAS  Google Scholar 

  58. Yang K-H, Parvizi J, Wang S-J, Lewallen DG, Kinnick RR, Greenleaf JF, Bolander ME. Exposure to low-intensity ultrasound increases aggrecan gene expression in a rat femur fracture model. J Orthop Res. 1996;14(5):802–9.

    Article  CAS  Google Scholar 

  59. Nagai M, Suzuki Y, Ota M. Systematic assessment of bone resorption, collagen synthesis, and calcification in chick embryonic calvaria in vitro: effects of prostaglandin E2. Bone. 1993;14(4):655–9.

    Article  CAS  Google Scholar 

  60. Reher P, Harris M, Whiteman M, Hai HK, Meghji S. Ultrasound stimulates nitric oxide and prostaglandin e2 production by human osteoblasts. Bone. 2002;31(1):236–41.

    Article  CAS  Google Scholar 

  61. Reher P, Elbeshir E-NI, Harvey W, Meghji S, Harris M. The stimulation of bone formation in vitro by therapeutic ultrasound. Ultrasound Med Biol. 1997;23(8):1251–8.

    Article  CAS  Google Scholar 

  62. Engler A, Bacakova L, Newman C, Hategan A, Griffin M, Discher D. Substrate compliance versus ligand density in cell on gel responses. Biophys J. 2004;86(1):617–28.

    Article  CAS  Google Scholar 

  63. Delaine-Smith RM, Reilly GC. Mesenchymal stem cell responses to mechanical stimuli. Muscles, Ligaments Tendons J. 2012;2(3):169–80.

    Google Scholar 

  64. Griffith LG, Swartz MA. Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Biol. 2006;7(3):211–24.

    Article  CAS  Google Scholar 

  65. Zhao F, Chella R, Ma T. Effects of shear stress on 3-D human mesenchymal stem cell construct development in a perfusion bioreactor system: experiments and hydrodynamic modeling. Biotechnol Bioeng. 2007;96(3):584–95.

    Article  CAS  Google Scholar 

  66. McCoy RJ, O'Brien FJ. Influence of shear stress in perfusion bioreactor cultures for the development of three-dimensional bone tissue constructs: a review. Tissue Eng Part B Rev. 2010;16(6):587–601.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Funding

Research reported in this publication was wholly supported by the National Science Foundation under award #1752915 and the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health under award number R01AR073206.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Y. K., F. A. Experimental design: Y. K., F. A., H. A., K. G., L. N. Experimental work: F. A., H. A., K. G. Manuscript preparation, writing, and editing: Y. K., F. A., L. N. Final approval of manuscript: F. A., Y. K., K. G., H. A., L. N.

Corresponding author

Correspondence to Yusuf Khan.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

Supplementary Figure I: The COX-2 and the PGE2 quantification of 0.25 % and 0.5 % alginate hydrogels were exposed to a one-time ultrasound exposure of 300 mW/cm2 spatial intensity. (A) COX-2 gene expression was quantified through RT-PCR. Ultrasound treatment of BMSCs encapsulated in 0.5 % alginate hydrogel enhanced COX-2 expression over the control, although not significantly. (B) Normalized PGE2 expression per 100,000 cells quantified through ELISA. PGE2 expression was significantly upregulated in 0.5 % hydrogels when treated with ultrasound compared to the control groups. As the matrix stiffness increased from 0.25 % to the 0.5 % alginate hydrogel, both COX-2 and PGE2 levels were increased. Error is reported in bar graphs as the standard deviation of the mean. Statistical significance noted (*P < 0.05), (n = 3). (DOCX 440 kb)

ESM 2

Supplementary Figure II: (A) Rheology data showing the storage and loss modulus of 2 % alginate with varying concentrations of CaCl2. Both storage and loss modulus increase with increasing concentration of CaCl2 showing that increased ionic cross-linking within the alginate solution makes stiffer hydrogels. (B) Storage and loss modulus of varying alginate solution with 10 mM CaCl2. Both the storage and loss modulus increase with an increase in the concentration of alginate solution. (DOCX 274 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Assanah, F., Anderson, H., Grassie, K. et al. Ultrasound-Derived Mechanical Stimulation of Alginate Hydrogels for Bone Repair: an In Vitro Study. Regen. Eng. Transl. Med. (2023). https://doi.org/10.1007/s40883-023-00312-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40883-023-00312-2

Keywords

Navigation