Skip to main content

Advertisement

Log in

A Single Administration of Synthetic Artificial Stem Cells (SASC) Attenuates Osteoarthritis Progression

  • Original Research
  • Published:
Regenerative Engineering and Translational Medicine Aims and scope Submit manuscript

Abstract

Purpose

Osteoarthritis (OA) is a highly prevalent joint disease for which common therapies may provide symptomatic relief but have failed to provide a curative solution. There has been a growing interest in disease-modifying therapies, such as the use of stem cells and bioactive factors in treating OA. The synthetic artificial stem cell (SASC) system has previously been introduced as one such disease-modifying therapy: designed to mimic the paracrine effect of biological stem cells but with the added ability to engineer the composition and tailor it to different tissue types.

Methods

In the present study, the efficacy of a single intra-articular injection was evaluated across three doses (1, 3, or 5 million) of SASC cells in a collagenase-induced OA rat model. Inflammation was monitored by joint swelling through the 63 day treatment period and structural and functional cartilage regeneration outcomes as well as local immune and inflammatory outcomes were evaluated by histology, nano-indentation of the gross cartilage, and immunohistochemistry. Further, in vitro SASC modulation of the NF-κβ pathway was observed by monitoring various upstream and downstream gene expression profiles along the pathway.

Results

A single administration of 3 million and 5 million SASC cells reduced knee swelling attenuates cartilage degeneration as observed by Safranin O staining, compared to the OA control. Further, major genes along the NF-κβ pathway were significantly modulated by SASC to a similar extent compared to ADSC control.

Conclusion

The present study demonstrated that SASC Cells have a dose-dependent response in attenuating collagenase-induced OA progression and effectively modulates the major inflammatory pathway involved in the pathogenesis of OA.

Lay Summary

In this study, we investigated the efficacy of synthetic artificial stem cells (SASC) in treating osteoarthritis (OA). Different doses of SASC cells were injected into rats with OA. Higher doses of SASC cells reduced knee swelling, protected against cartilage degeneration, and modulated the inflammatory NF-κβ pathway. This work highlights potential of SASC cells as a curative treatment for OA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Published data will be open-access and available publicly.

References

  1. Bhattacharjee M, et al. Injectable amnion hydrogel-mediated delivery of adipose-derived stem cells for osteoarthritis treatment. Proc Natl Acad Sci USA. 2022;119(4):e2120968119. https://doi.org/10.1073/pnas.2120968119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Shah S, Otsuka T, Bhattacharjee M, Laurencin CT. Minimally Invasive Cellular Therapies for Osteoarthritis Treatment. Regen Eng Transl Med. 2021;7(1):76–90. https://doi.org/10.1007/s40883-020-00184-w.

    Article  Google Scholar 

  3. Daneshmandi L, et al. Emergence of the Stem Cell Secretome in Regenerative Engineering. Trends Biotechnol. 2020;38(12):1373–84. https://doi.org/10.1016/j.tibtech.2020.04.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Richardson SM, et al. Mesenchymal stem cells in regenerative medicine: Focus on articular cartilage and intervertebral disc regeneration. Methods. 2016;99:69–80. https://doi.org/10.1016/j.ymeth.2015.09.015.

    Article  CAS  PubMed  Google Scholar 

  5. Mei L, et al. Culture-expanded allogenic adipose tissue-derived stem cells attenuate cartilage degeneration in an experimental rat osteoarthritis model. PLoS ONE. 2017;12(4):e0176107. https://doi.org/10.1371/journal.pone.0176107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Katagiri W, Sakaguchi K, Kawai T, Wakayama Y, Osugi M, Hibi H. A defined mix of cytokines mimics conditioned medium from cultures of bone marrow-derived mesenchymal stem cells and elicits bone regeneration. Cell Prolif. 2017;50(3):e12333. https://doi.org/10.1111/cpr.12333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shah S, Esdaille CJ, Bhattacharjee M, Kan H-M, Laurencin CT. The synthetic artificial stem cell (SASC): Shifting the paradigm of cell therapy in regenerative engineering. Proc Natl Acad Sci USA. 2022;119(2):e2116865118. https://doi.org/10.1073/pnas.2116865118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Berenbaum F. Osteoarthritis as an inflammatory disease (osteoarthritis is not osteoarthrosis!). Osteoarthr Cartil. 2013;21(1):16–21. https://doi.org/10.1016/j.joca.2012.11.012.

    Article  CAS  Google Scholar 

  9. Lawrence T. The Nuclear Factor NF- B Pathway in Inflammation. Cold Spring Harb Perspect Biol. 2009;1(6):a001651–a001651. https://doi.org/10.1101/cshperspect.a001651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liu T, Zhang L, Joo D, Sun S-C. NF-κB signaling in inflammation. Sig Transduct Target Ther. 2017;2(1):17023. https://doi.org/10.1038/sigtrans.2017.23.

    Article  Google Scholar 

  11. Man GS, Mologhianu G. Osteoarthritis pathogenesis - a complex process that involves the entire joint. J Med Life. 2014;7(1):37–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. ter Huurne M, et al. Antiinflammatory and chondroprotective effects of intraarticular injection of adipose-derived stem cells in experimental osteoarthritis. Arthritis Rheum. 2012;64(11):3604–13. https://doi.org/10.1002/art.34626.

    Article  CAS  PubMed  Google Scholar 

  13. Murphy JM, Fink DJ, Hunziker EB, Barry FP. Stem cell therapy in a caprine model of osteoarthritis. Arthritis Rheum. 2003;48(12):3464–74. https://doi.org/10.1002/art.11365.

    Article  PubMed  Google Scholar 

  14. Ude CC, et al. Cartilage Regeneration by Chondrogenic Induced Adult Stem Cells in Osteoarthritic Sheep Model. PLoS ONE. 2014;9(6):e98770. https://doi.org/10.1371/journal.pone.0098770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Saito T, Tanaka S. Molecular mechanisms underlying osteoarthritis development: Notch and NF-κB. Arthritis Res Ther. 2017;19(1):94. https://doi.org/10.1186/s13075-017-1296-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mariani E, Pulsatelli L, Facchini A. Signaling Pathways in Cartilage Repair. IJMS. 2014;15(5):8667–98. https://doi.org/10.3390/ijms15058667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Marcu KB, Otero M, Olivotto E, Maria Borzi R, Goldring MB. NF-κB Signaling: Multiple Angles to Target OA. CDT. 2010;11(5):599–613. https://doi.org/10.2174/138945010791011938.

    Article  CAS  Google Scholar 

  18. Burguera EF, Vela-Anero Á, Magalhães J, Meijide-Faílde R, Blanco FJ. Effect of hydrogen sulfide sources on inflammation and catabolic markers on interleukin 1β-stimulated human articular chondrocytes. Osteoarthr Cartil. 2014;22(7):1026–35. https://doi.org/10.1016/j.joca.2014.04.031.

    Article  CAS  Google Scholar 

  19. Kobayashi M, et al. Role of interleukin-1 and tumor necrosis factor ? in matrix degradation of human osteoarthritic cartilage. Arthritis Rheum. 2005;52(1):128–35. https://doi.org/10.1002/art.20776.

    Article  CAS  PubMed  Google Scholar 

  20. Kojima F, Naraba H, Miyamoto S, Beppu M, Aoki H, Kawai S. Membrane-associated prostaglandin E synthase-1 is upregulated by proinflammatory cytokines in chondrocytes from patients with osteoarthritis. Arthritis Res Ther. 2004;6(4):R355. https://doi.org/10.1186/ar1195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Olivotto E, Otero M, Marcu KB, Goldring MB. Pathophysiology of osteoarthritis: canonical NF-κB/IKKβ-dependent and kinase-independent effects of IKKα in cartilage degradation and chondrocyte differentiation. RMD Open. 2015;1(Suppl 1):e000061. https://doi.org/10.1136/rmdopen-2015-000061.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Montaseri A, et al. IGF-1 and PDGF-bb Suppress IL-1β-Induced Cartilage Degradation through Down-Regulation of NF-κB Signaling: Involvement of Src/PI-3K/AKT Pathway. PLoS ONE. 2011;6(12):e28663. https://doi.org/10.1371/journal.pone.0028663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Choi Jo. Park, Kang, and Park, “NF-B Signaling Pathways in Osteoarthritic Cartilage Destruction.” Cells. 2019;8(7):734. https://doi.org/10.3390/cells8070734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li T, et al. TGF-β type 2 receptor–mediated modulation of the IL-36 family can be therapeutically targeted in osteoarthritis. Sci Transl Med. 2019;11(491):eaan2585. https://doi.org/10.1126/scitranslmed.aan2585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li X-G, et al. Fibroblast growth factor 18 alleviates hyperoxia-induced lung injury in mice by adjusting oxidative stress and inflammation. Eur Rev Med Pharmacol Sci. 2021;25(3):1485–94. https://doi.org/10.26355/eurrev_202102_24856.

    Article  PubMed  Google Scholar 

  26. Bhattacharjee M, et al. Preparation and characterization of amnion hydrogel and its synergistic effect with adipose derived stem cells towards IL1β activated chondrocytes. Sci Rep. 2020;10(1):18751. https://doi.org/10.1038/s41598-020-75921-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sun Z, Nair LS, Laurencin CT. The Paracrine Effect of Adipose-Derived Stem Cells Inhibits IL-1β-induced Inflammation in Chondrogenic Cells through the Wnt/β-Catenin Signaling Pathway. Regen Eng Transl Med. 2018;4(1):35–41. https://doi.org/10.1007/s40883-018-0047-1.

    Article  CAS  Google Scholar 

  28. Yang W-T, et al. Stromal-vascular fraction and adipose-derived stem cell therapies improve cartilage regeneration in osteoarthritis-induced rats. Sci Rep. 2022;12(1):2828. https://doi.org/10.1038/s41598-022-06892-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang RM, et al. Humanized mouse model for assessing the human immune response to xenogeneic and allogeneic decellularized biomaterials. Biomaterials. 2017;129:98–110. https://doi.org/10.1016/j.biomaterials.2017.03.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jenei-Lanzl Z, Meurer A, Zaucke F. Interleukin-1β signaling in osteoarthritis – chondrocytes in focus. Cell Signal. 2019;53:212–23. https://doi.org/10.1016/j.cellsig.2018.10.005.

    Article  CAS  PubMed  Google Scholar 

  31. Ahmad N, Ansari MY, Haqqi TM. Role of iNOS in osteoarthritis: Pathological and therapeutic aspects. J Cell Physiol. 2020;235(10):6366–76. https://doi.org/10.1002/jcp.29607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Paik J, Duggan ST, Keam SJ. Triamcinolone Acetonide Extended-Release: A Review in Osteoarthritis Pain of the Knee. Drugs. 2019;79(4):455–62. https://doi.org/10.1007/s40265-019-01083-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang Z, Huang G. Intra-articular lornoxicam loaded PLGA microspheres: enhanced therapeutic efficiency and decreased systemic toxicity in the treatment of osteoarthritis. Drug Delivery. 2012;19(5):255–63. https://doi.org/10.3109/10717544.2012.700962.

    Article  CAS  PubMed  Google Scholar 

  34. Woods PS et al. Automated Indentation Demonstrates Structural Stiffness of Femoral Articular Cartilage and Temporomandibular Joint Mandibular Condylar Cartilage Is Altered in FgF2KO Mice. CARTILAGE. 2020; 194760352096256. https://doi.org/10.1177/1947603520962565

Download references

Acknowledgements

This work was supported by NIH Grant T32 AR079114. Support from the Raymond and Beverly Sackler Center is gratefully acknowledged.

The authors gratefully thank the Center for Comparative Medicine at University of Connecticut Health Center. We also thank Dr. Chia-Ling Kuo of the Connecticut Convergence Institute for Translation in Regenerative Engineering for her help with statistical analysis.

Funding

National Institutes of Health grant DP1AR068147 (CTL)

National Institutes of Health grant T32 AR079114 (CTL)

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: SS, LSN, CTL.

Methodology: SS, TAS, CTL

Investigation: SS, MB, HMK

Analysis: SS

Funding acquisition: CTL

Writing: SS, MB, HMK, RLM, TAS, LSN, CTL

Corresponding author

Correspondence to Cato T. Laurencin.

Ethics declarations

Competing Interests

University of Connecticut has filed a patent application on behalf of the inventors (S.S., H.M.K., L.S.N., C.T.L) entitled The Synthetic Artificial Stem Cell. L.S.N has the following competing financial interest: Soft tissue regeneration/Biorez. C.T.L. has the following competing financial interests: Mimedx, Alkermes Company, Biobind, Soft tissue regeneration/Biorez, Healing Orthopedic Technologies-Bone.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, S., Bhattacharjee, M., Kan, HM. et al. A Single Administration of Synthetic Artificial Stem Cells (SASC) Attenuates Osteoarthritis Progression. Regen. Eng. Transl. Med. 10, 78–92 (2024). https://doi.org/10.1007/s40883-023-00307-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40883-023-00307-z

Keywords

Navigation