Skip to main content

Advertisement

Log in

Single-Dose Induction of Osteogenic Differentiation of Mesenchymal Stem Cells Using a Cyclic AMP Activator, Forskolin

  • Original Research
  • Published:
Regenerative Engineering and Translational Medicine Aims and scope Submit manuscript

Abstract

Small molecule-based bone regenerative engineering has been proposed as a promising approach in repairing bone tissue and circumventing the issues associated with protein-based growth factor treatment. However, off-target effects of small molecules due to their short half-life and non-specificity hinder their wide-spread usage. Previously, we have investigated the capability of various cyclic adenosine monophosphate (cAMP) analogues to induce osteogenic differentiation in vitro using osteoprogenitor MC3T3-E1 cells. A promising strategy to mitigate the side-effect risk of small molecule treatments is to reduce their frequency of administration. However, the capability of these cAMP small molecules to induce osteogenesis in primary cells such as mesenchymal stem cells using the shorter-term or single-dose treatment approach has yet to be fully evaluated. In this study, we performed a phenotypic mini-screen of several cAMP analogues and activating small molecules to compare their osteoinductive effects on rabbit mesenchymal stem cells (MSCs). Our results demonstrated that the treatment of the small molecule forskolin (100 µM) for 24 h significantly increased the osteogenic differentiation and mineralization of rabbit adipose-derived stem cells (rADSCs) and rabbit bone marrow-derived stem cells (rBMSCs). In addition, we compared the effects of single-dose and repeat-dose forskolin treatment towards inducing osteogenic differentiation of rBMSCs. Overall, by inducing the osteogenic differentiation of mesenchymal stem cells with a single-dose of forskolin and without requiring repeated forskolin administration shows great potential for bone regenerative engineering applications.

Lay Summary

Bone grafting procedures have become increasingly common in the United States, with approximately 500,000 cases occurring each year at a societal cost exceeding $2.5 billion. Recombinant human bone morphogenetic proteins (rhBMPs) are therapeutic agents that have been widely used by orthopaedic surgeons to stimulate bone tissue formation when paired with biomaterials. However, significant limitations such as instability, low solubility, immunogenicity, high production cost, and the potential risk of disease transmission of these therapies remain. Therefore, efforts have been made to discover and repurpose small molecule therapeutics to promote bone regeneration. This study describes the evaluation of cAMP analogues and activating small molecules that can be used as alternative treatment options to rhBMPs in bone repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lo KW-H, Ulery BD, Ashe KM, Laurencin CT. Studies of bone morphogenetic protein-based surgical repair. Adv Drug Deliv Rev. 2012;64(12):1277–91. https://doi.org/10.1016/j.addr.2012.03.014.

    Article  CAS  Google Scholar 

  2. Aravamudhan A, et al. Osteoinductive Small Molecules: Growth Factor Alternatives for Bone Tissue Engineering. Curr Pharm Des. 2013;19(19):3420–8. https://doi.org/10.2174/1381612811319190008.

    Article  CAS  Google Scholar 

  3. Awale G, Wong E, Rajpura K, Lo KW-H. Engineered Bone Tissue with Naturally-Derived Small Molecules. Curr Pharm Des. 2017;23(24):3585–94. https://doi.org/10.2174/1381612823666170516145800.

    Article  CAS  Google Scholar 

  4. Laurencin CT, Ashe KM, Henry N, Kan HM, Lo KW-H. Delivery of small molecules for bone regenerative engineering: preclinical studies and potential clinical applications. Drug Discov Today. 2014;19(6):794–800. https://doi.org/10.1016/j.drudis.2014.01.012.

    Article  CAS  Google Scholar 

  5. Pushpakom S, et al. Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov. 2019;18(1):41–58. https://doi.org/10.1038/nrd.2018.168.

    Article  CAS  Google Scholar 

  6. Knight MN, Hankenson KD. Mesenchymal Stem Cells in Bone Regeneration. Adv Wound Care. 2013;2(6):306–16. https://doi.org/10.1089/wound.2012.0420.

    Article  Google Scholar 

  7. Kangari P, Talaei-Khozani T, Razeghian-Jahromi I, Razmkhah M. Mesenchymal stem cells: amazing remedies for bone and cartilage defects. Stem Cell Res Ther. 2020;11(1):492. https://doi.org/10.1186/s13287-020-02001-1.

    Article  Google Scholar 

  8. Rodríguez-Fuentes DE, Fernández-Garza LE, Samia-Meza JA, Barrera-Barrera SA, Caplan AI, Barrera-Saldaña HA. Mesenchymal Stem Cells Current Clinical Applications: A Systematic Review. Arch Med Res. 2021;52(1):93–101. https://doi.org/10.1016/j.arcmed.2020.08.006.

    Article  CAS  Google Scholar 

  9. Wagner BK, Schreiber SL. The Power of Sophisticated Phenotypic Screening and Modern Mechanism-of-Action Methods. Cell Chem Biol. 2016;23(1):3–9. https://doi.org/10.1016/j.chembiol.2015.11.008.

    Article  CAS  Google Scholar 

  10. Zheng W, Thorne N, McKew JC. Phenotypic screens as a renewed approach for drug discovery. Drug Discov Today. 2013;18(21):1067–73. https://doi.org/10.1016/j.drudis.2013.07.001.

    Article  CAS  Google Scholar 

  11. Sassone-Corsi P. The Cyclic AMP Pathway. Cold Spring Harb Perspect Biol. 2012;4(12):a011148–a011148. https://doi.org/10.1101/cshperspect.a011148.

    Article  CAS  Google Scholar 

  12. Zaccolo M, Zerio A, Lobo MJ. Subcellular Organization of the cAMP Signaling Pathway. Pharmacol Rev. 2021;73(1):278–309. https://doi.org/10.1124/pharmrev.120.000086.

    Article  CAS  Google Scholar 

  13. Yan K, Gao L-N, Cui Y-L, Zhang Y, Zhou X. The cyclic AMP signaling pathway: Exploring targets for successful drug discovery (Review). Mol Med Rep. 2016;13(5):3715–23. https://doi.org/10.3892/mmr.2016.5005.

    Article  CAS  Google Scholar 

  14. Epstein PM, “Bone and the cAMP Signaling Pathway: Emerging Therapeutics,” in Bone-Metabolic Functions and Modulators, F. Bronner, M. C. Farach-Carson, and H. I. Roach, Eds. London: Springer London, 2012; 271–287. https://doi.org/10.1007/978-1-4471-2745-1_16.

  15. Ifegwu OC, Awale G, Rajpura K, Lo KW-H, Laurencin CT. Harnessing cAMP signaling in musculoskeletal regenerative engineering. Drug Discov Today. 2017;22(7):1027–44. https://doi.org/10.1016/j.drudis.2017.03.008.

    Article  CAS  Google Scholar 

  16. Ho WC, Greene RM, Shanfeld J, Davidovitch Z. Cyclic nucleotides during chondrogenesis: concentration and distribution in vivo and in vitro. J Exp Zool. 1982;224(3):321–30. https://doi.org/10.1002/jez.1402240305.

    Article  CAS  Google Scholar 

  17. Solursh M, Reiter R, Ahrens PB, Pratt RM. Increase in Levels of Cyclic AMP During Avian Limb Chondrogenesis in vitro. Differentiation. 1979;15(1):183–6. https://doi.org/10.1111/j.1432-0436.1979.tb01049.x.

    Article  CAS  Google Scholar 

  18. Babich GL, Foret JE. Effects of Dibutyryl Cyclic AMP and Related Compounds on Newt Limb Regeneration Blastemas in vitro. Oncology. 1973;28(1):89–95. https://doi.org/10.1159/000224804.

    Article  CAS  Google Scholar 

  19. Lo KW-H, Ashe KM, Kan HM, Lee DA, Laurencin CT. Activation of cyclic amp/protein kinase: A signaling pathway enhances osteoblast cell adhesion on biomaterials for regenerative engineering. J Orthop Res. 2011;29(4):602–8. https://doi.org/10.1002/jor.21276.

    Article  CAS  Google Scholar 

  20. Lo KW-H, Kan HM, Gagnon KA, Laurencin CT. One-day treatment of small molecule 8-bromo-cyclic AMP analogue induces cell-based VEGF production for in vitro angiogenesis and osteoblastic differentiation: cAMP analogue promotes cell-based VEGF production for in vitro angiogenesis and osteogenic differentiation. J Tissue Eng Regen Med. 2016;10(10):867–75. https://doi.org/10.1002/term.1839.

    Article  CAS  Google Scholar 

  21. Zhang Z-R et al., “Osthole Enhances Osteogenesis in Osteoblasts by Elevating Transcription Factor Osterix via cAMP/CREB Signaling In Vitro and In Vivo,” Nutrients, 2017; 9(6), Art. no. 6, https://doi.org/10.3390/nu9060588.

  22. Doorn J, Siddappa R, van Blitterswijk CA, de Boer J. Forskolin Enhances In Vivo Bone Formation by Human Mesenchymal Stromal Cells. Tissue Eng Part A. 2012;18(5–6):558–67. https://doi.org/10.1089/ten.tea.2011.0312.

    Article  CAS  Google Scholar 

  23. Kuttappan S, et al. ONO-1301 loaded nanocomposite scaffolds modulate cAMP mediated signaling and induce new bone formation in critical sized bone defect. Biomater Sci. 2020;8(3):884–96. https://doi.org/10.1039/C9BM01352K.

    Article  CAS  Google Scholar 

  24. Richter A, Anton SE, Koch P, Dennett SL. The impact of reducing dose frequency on health outcomes. Clin Ther. 2003;25(8):2307–35. https://doi.org/10.1016/S0149-2918(03)80222-9.

    Article  Google Scholar 

  25. McCormack JP, Allan GM, Virani AS. Is bigger better? An argument for very low starting doses. CMAJ Can Med Assoc J. 2011;183(1):65–9. https://doi.org/10.1503/cmaj.091481.

    Article  Google Scholar 

  26. Daughton CG, Ruhoy IS. Lower-dose prescribing: Minimizing ‘side effects’ of pharmaceuticals on society and the environment. Sci Total Environ. 2013;443:324–37. https://doi.org/10.1016/j.scitotenv.2012.10.092.

    Article  CAS  Google Scholar 

  27. Ifegwu OC, et al. Bone Regenerative Engineering Using a Protein Kinase A-Specific Cyclic AMP Analogue Administered for Short Term. Regen Eng Transl Med. 2018;4(4):206–15. https://doi.org/10.1007/s40883-018-0063-1.

    Article  CAS  Google Scholar 

  28. O’Neill E, Rajpura K, Carbone EJ, Awale G, Kan H-M, Lo KW-H. Repositioning Tacrolimus: Evaluation of the Effect of Short-Term Tacrolimus Treatment on Osteoprogenitor Cells and Primary Cells for Bone Regenerative Engineering. Assay Drug Dev Technol. 2019;17(2):77–88. https://doi.org/10.1089/adt.2018.876.

    Article  CAS  Google Scholar 

  29. Lo KW-H, Kan HM, Ashe KM, Laurencin CT. The small molecule PKA-specific cyclic AMP analogue as an inducer of osteoblast-like cells differentiation and mineralization. J Tissue Eng Regen Med. 2012;6(1):40–8. https://doi.org/10.1002/term.395.

    Article  CAS  Google Scholar 

  30. Kao R, Lu W, Louie A, Nissenson R. Cyclic AMP signaling in bone marrow stromal cells has reciprocal effects on the ability of mesenchymal stem cells to differentiate into mature osteoblasts versus mature adipocytes. Endocrine. 2012;42(3):622–36. https://doi.org/10.1007/s12020-012-9717-9.

    Article  CAS  Google Scholar 

  31. Vaquette C, Sudheesh Kumar PT, Petcu EB, Ivanovski S. Combining electrospinning and cell sheet technology for the development of a multiscale tissue engineered ligament construct (℡C). J Biomed Mater Res B Appl Biomater. 2018;106(1):399–409. https://doi.org/10.1002/jbm.b.33828.

    Article  CAS  Google Scholar 

  32. Birmingham E, Niebur GL, McHugh PE, Shaw G, Barry FP, McNamara LM. Osteogenic differentiation of mesenchymal stem cells is regulated by osteocyte and osteoblast cells in a simplified bone niche. Eur Cell Mater. 2012;23:13–27. https://doi.org/10.22203/ecm.v023a02.

    Article  CAS  Google Scholar 

  33. Hanna H, Mir LM, Andre FM. In vitro osteoblastic differentiation of mesenchymal stem cells generates cell layers with distinct properties. Stem Cell Res Ther. 2018;9(1):203. https://doi.org/10.1186/s13287-018-0942-x.

    Article  CAS  Google Scholar 

  34. Roostaeian J, et al. Characterization of Growth and Osteogenic Differentiation of Rabbit Bone Marrow Stromal Cells12 1Jason Roostaeian and Brian Carlsen contributed equally to this manuscript. 2This work was supported by Merit Review Grant awarded to T.A.M. by U.S. Department of Veteran Affairs. J Surg Res. 2006;133(2):76–83. https://doi.org/10.1016/j.jss.2005.09.026.

    Article  CAS  Google Scholar 

  35. Laurencin CT, Khan Y. Regenerative Engineering. Sci Transl Med. 2012;4(160):160ed9-160ed9. https://doi.org/10.1126/scitranslmed.3004467.

    Article  Google Scholar 

  36. Otsuka T, Kan H-M, Laurencin CT. Regenerative Engineering Approaches to Scar-Free Skin Regeneration. Regen Eng Transl Med. 2021. https://doi.org/10.1007/s40883-021-00229-8.

    Article  Google Scholar 

  37. O’Neill E, Awale G, Daneshmandi L, Umerah O, Lo KW-H. The roles of ions on bone regeneration. Drug Discov Today. 2018;23(4):879–90. https://doi.org/10.1016/j.drudis.2018.01.049.

    Article  CAS  Google Scholar 

  38. Bayer EA, Gottardi R, Fedorchak MV, Little SR. The scope and sequence of growth factor delivery for vascularized bone tissue regeneration. J Controlled Release. 2015;219:129–40. https://doi.org/10.1016/j.jconrel.2015.08.004.

    Article  CAS  Google Scholar 

  39. Moffat JG, Vincent F, Lee JA, Eder J, Prunotto M. Opportunities and challenges in phenotypic drug discovery: an industry perspective. Nat Rev Drug Discov. 2017;16(8):531–43. https://doi.org/10.1038/nrd.2017.111.

    Article  CAS  Google Scholar 

  40. Oryan A, Kamali A, Moshiri A, Eslaminejad MB. Role of Mesenchymal Stem Cells in Bone Regenerative Medicine: What Is the Evidence? Cells Tissues Organs. 2017;204(2):59–83. https://doi.org/10.1159/000469704.

    Article  CAS  Google Scholar 

  41. Poppe H, et al. Cyclic nucleotide analogs as probes of signaling pathways. Nat Methods. 2008;5(4):277–8. https://doi.org/10.1038/nmeth0408-277.

    Article  CAS  Google Scholar 

  42. Schwede F, Maronde E, Genieser H-G, Jastorff B. Cyclic nucleotide analogs as biochemical tools and prospective drugs. Pharmacol Ther. 2000;87(2–3):199–226. https://doi.org/10.1016/S0163-7258(00)00051-6.

    Article  CAS  Google Scholar 

  43. Insel PA, Ostrom RS. Forskolin as a Tool for Examining Adenylyl Cyclase Expression, Regulation, and G Protein Signaling. Cell Mol Neurobiol. 2003;23(3):305–14. https://doi.org/10.1023/A:1023684503883.

    Article  CAS  Google Scholar 

  44. Alasbahi RH, Melzig MF. Plectranthus barbatus: A Review of Phytochemistry, Ethnobotanical Uses and Pharmacology – Part 2. Planta Med. 2010;76(8):753–65. https://doi.org/10.1055/s-0029-1240919.

    Article  CAS  Google Scholar 

  45. Alasbahi RH, Melzig MF. Forskolin and derivatives as tools for studying the role of cAMP. Pharm - Int J Pharm Sci. 2012;67(1):5–13. https://doi.org/10.1691/ph.2012.1642.

    Article  CAS  Google Scholar 

  46. Sapio L, et al. The Natural cAMP Elevating Compound Forskolin in Cancer Therapy: Is It Time? J Cell Physiol. 2017;232(5):922–7. https://doi.org/10.1002/jcp.25650.

    Article  CAS  Google Scholar 

  47. Rumiński S, Kalaszczyńska I, Lewandowska-Szumieł M. Effect of cAMP Signaling Regulation in Osteogenic Differentiation of Adipose-Derived Mesenchymal Stem Cells. Cells. 2020;9(7):1587. https://doi.org/10.3390/cells9071587.

    Article  CAS  Google Scholar 

  48. Takahashi H, Honma M, Miyauchi Y, Nakamura S, Ishida-Yamamoto A, Iizuka H. Cyclic AMP differentially regulates cell proliferation of normal human keratinocytes through ERK activation depending on the expression pattern of B-Raf. Arch Dermatol Res. 2004;296(2):74. https://doi.org/10.1007/s00403-004-0478-z.

    Article  CAS  Google Scholar 

  49. Schmitt JM, Stork PJS. Cyclic AMP-Mediated Inhibition of Cell Growth Requires the Small G Protein Rap1. Mol Cell Biol. 2001;21(11):3671–83. https://doi.org/10.1128/MCB.21.11.3671-3683.2001.

    Article  CAS  Google Scholar 

  50. Bretz F, Dette H, Pinheiro J. “Practical considerations for optimal designs in clinical dose finding studies,” Stat Med, 2010; 29(0). https://doi.org/10.1002/sim.3802

  51. Lo KW-H, Jiang T, Gagnon KA, Nelson C, Laurencin CT. Small-molecule based musculoskeletal regenerative engineering. Trends Biotechnol. 2014;32(2):74–81. https://doi.org/10.1016/j.tibtech.2013.12.002.

    Article  CAS  Google Scholar 

  52. Wen H, Jung H, Li X. Drug Delivery Approaches in Addressing Clinical Pharmacology-Related Issues: Opportunities and Challenges. AAPS J. 2015;17(6):1327–40. https://doi.org/10.1208/s12248-015-9814-9.

    Article  CAS  Google Scholar 

  53. Greenfield EM. Anabolic effects of intermittent PTH on osteoblasts. Curr Mol Pharmacol. 2012;5(2):127–34.

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by funding from the NIH Director's Pioneer Award DP1-AR-068147. G.M.A was supported by the NIH Supplemental Grant to Promote Diversity in Health-Related Research Program (NIH Grant 5R21EB024787-03) and NSF-EFRI-REM (1332329). M.A.B was supported by the Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cato T. Laurencin.

Ethics declarations

Competing Interests

Dr. Cato T. Laurencin is the editor-in-chief and Dr. Kevin Lo is the assistant managing editor of Regenerative Engineering and Translational Medicine. Dr. Cato Laurencin has the following competing financial interests: Mimedx, Alkermes Company, Biobind, Soft Tissue Regeneration/Biorez, and Healing Orthopaedic Technologies-Bone. The authors have no non-financial competing interests.

Additional information

Publishers Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Future Work

Future studies will investigate the addition of forskolin within a drug delivery scaffold system and test the in vivo efficacy of the single-dose treatment scheme in promoting bone formation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Awale, G.M., Barajaa, M.A., Kan, HM. et al. Single-Dose Induction of Osteogenic Differentiation of Mesenchymal Stem Cells Using a Cyclic AMP Activator, Forskolin. Regen. Eng. Transl. Med. 9, 97–107 (2023). https://doi.org/10.1007/s40883-022-00262-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40883-022-00262-1

Keywords

Navigation