Skip to main content

Advertisement

Log in

Cyclic AMP differentially regulates cell proliferation of normal human keratinocytes through ERK activation depending on the expression pattern of B-Raf

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Intracellular cyclic AMP (cAMP) increased by extracellular stimuli induces various biological effects, such as cell proliferation, differentiation, and migration. Previous reports regarding the effect of cAMP on keratinocyte proliferation are contradictory and indicate that the effect apparently depends on cellular density. Recent studies have revealed that cAMP signaling regulates cell proliferation by modulating mitogen-activated protein kinase (MAPK) activity. The precise mechanism by which cAMP affects keratinocyte proliferation and/or the crosstalk between the cAMP and MAPK signaling pathways, however, remain to be determined. Using normal human keratinocytes (NHK), we investigated the effect of cAMP on keratinocyte proliferation and its molecular mechanism in terms of cellular density. In confluent NHK, cyclic AMP decreased extracellular regulated kinase (ERK) phosphorylation and cell proliferation in a Ras-independent and Rap1-dependent manner. The decreased cell proliferation by cAMP was blocked by the MEK-1 inhibitor, PD98059. In contrast, in subconfluent NHK, cAMP increased ERK phosphorylation and cell proliferation. Western blot analysis revealed that NHK expressed B-Raf and Rap-1. Although both 95 kDa and 62 kDa B-Raf isoforms were expressed in subconfluent NHK, only 62 kDa B-Raf was detected in confluent NHK. Transfection of 95 kDa B-Raf into confluent NHK resulted in a cAMP-dependent increase in ERK phosphorylation and cell proliferation. These findings indicate that differential expression of B-Raf isoforms is critical for cAMP-dependent regulation of NHK proliferation that depends on phosphorylation of ERK.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3a–c
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9a, b
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Adachi K, Halprin KM, Takeda J, Nemoto O, Aoyagi T, Iizuka H, Yoshikawa K, Levine V (1982) Epidermal surface receptors which link pharmacological mediators to adenylate cyclase system. Br J Dermatol [Suppl] 107:111–118

    Google Scholar 

  2. Stork PJS, Schmitt JM (2002) Crosstalk between cAMP and MAP kinases signaling in the regulation of cell proliferation. Trends Cell Biol 12:258–266

    Article  PubMed  CAS  Google Scholar 

  3. Fujita T, Meguro T, Fukuyama R, Nakamuta H, Koide M (2002) New signaling pathway for parathyroid hormone and cyclic AMP action on extracellular-regulated kinase and cell proliferation in bone cells. J Biol Chem 277:22191–22200

    PubMed  CAS  Google Scholar 

  4. Graves LM, Lawrence JC (1996) Insulin, growth factors, and cAMP: antagonism in the signal transduction pathway. Trends Endocrinol Metab 7:43–50

    CAS  PubMed  Google Scholar 

  5. Frodrin M, Peraldi P, Van Obberghen E (1994) Cyclic AMP activates the mitogen-activated protein kinase cascade in PC12 cells. J Biol Chem 269:6207–6214

    Google Scholar 

  6. Withers DJ, Bloom SR, Rozengurt E (1995) Dissociation of cAMP-stimulated mitogenesis from activation of the mitogen-activated protein kinase cascade in Swiss 3T3 cells. J Biol Chem 270:21411–21419

    PubMed  CAS  Google Scholar 

  7. Burgering BM, Pronk GJ, van Weeren PC, Chardin P, Bos JL (1993) cAMP antagonizes p21ras-directed activation of extracellular signal-regulated kinase 2 and phosphorylation of mSos nucleotide exchange factor. EMBO J 12:4211–4220

    PubMed  CAS  ISI  Google Scholar 

  8. Cook SJ, McCormick F (1993) Inhibition by cAMP of Ras-dependent activation of Raf. Science 262:1069–1072

    PubMed  CAS  ISI  Google Scholar 

  9. Delescluse C, Colburn NH, Duell EA, Voorhees JJ (1974) Cyclic AMP-elevating agents inhibit proliferation of keratinizing guinea pig epidermal cells. Differentiation 2:343–350

    PubMed  CAS  ISI  Google Scholar 

  10. Yamanishi K, Kishimoto S, Yasuno H (1989) Cyclic AMP as a negative regulator of DNA synthesis in FRSK cells, a fetal rat epidermal cell line. J Dermatol 16:2–6

    PubMed  CAS  Google Scholar 

  11. Green H (1978) Cyclic AMP in relation to proliferation of the epidermal cells: a new view. Cell 15:801–811

    Article  PubMed  CAS  ISI  Google Scholar 

  12. Kuroki T, Ito T, Hosomi J, Munakata K, Uchida T, Nagai Y (1982) Cyclic AMP as a meiotic signal for epidermal keratinocytes, but not for dermal fibroblast. Cell Struct Funct 7:295–305

    Article  CAS  Google Scholar 

  13. Okada N, Kitano Y, Ichihara K (1982) Effect of cholera toxin on proliferation of cultured human keratinocytes in relation to intracellular cyclic AMP levels. J Invest Dermatol 79:42–47

    Article  PubMed  CAS  Google Scholar 

  14. Robbins DJ, Zhen E, Owaki H, Vanderbilt CA, Ebert D, Geppert TD, Cobb MH (1993) Regulation and properties of extracellular signal-regulated protein kinase 1 and 2 in vitro. J Biol Chem 68:5097–5106

    Google Scholar 

  15. Minden A, In A, McMahon M, Lange-Carter C, Derijard D, Davis RJ, Johnson GL, Karin M (1994) Differential activation of ERK and JNK mitogen-activated protein kinase by Raf-1 and MEKK. Science 266:1719–1723

    PubMed  CAS  ISI  Google Scholar 

  16. Yan M, Dai T, Deak JC, Kyriakis JM, Zon LI, Woodgett JR, Templeton DJ (1994) Activation of stress-activated protein kinase by MEKK1 phosphorylation of its activator SEK1. Nature 372:798–800

    PubMed  CAS  ISI  Google Scholar 

  17. Yan M, Templeton DJ (1994) Identification of 2 serine residues of MEK-1 that are differentially phosphorylated during activation by raf and MEK kinase. J Biol Chem 269:19067–19073

    PubMed  CAS  Google Scholar 

  18. Schmitt JM, Stork PJ (2000) β2-adrenergic receptor activates extracellular signal-regulated kinases (ERKs) via the small G protein Rap1 and the serine/threonine kinase B-Raf. J Biol Chem 275:25342–25350

    PubMed  CAS  Google Scholar 

  19. Namikawa K, Honma M, Abe K, Takeda M, Mansur K, Obata T, Miwa A, Okado H, Kiyama H (2000) Akt/protein kinase B prevents injury-induced motoneuron death and accelerates axonal regeneration. J Neurosci 20:2875–2886

    PubMed  CAS  Google Scholar 

  20. Miyake S, Makimura M, Kanegae Y, Harada S, Sato Y, Takamori K, Tokuda C, Saito I (1996) Efficient generation of recombinant adenoviruses using adenovirus DNA-terminal protein complex and cosmid bearing the full-length virus genome. Proc Natl Acad Sci U S A 93:1320–1324

    Article  PubMed  CAS  Google Scholar 

  21. Niwa H, Yamamura K, Miyazaki J (1991) Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108:193–199

    PubMed  CAS  ISI  Google Scholar 

  22. Kanegae Y, Makimura M, Saito I (1994) A simple and efficient method for purification of infectious recombinant adenovirus. Jpn J Med Sci Biol 47:157–166

    PubMed  CAS  Google Scholar 

  23. Tsutsui M, Iizuka H, Ohkawara A, Adachi K, Kanzaki T (1987) Adenylate cyclase system of human trichilemmoma cell line. Arch Dermatol Res 279:530–535

    Article  PubMed  CAS  Google Scholar 

  24. Nakamura S, Takahashi H, Kinouchi M, Manabe A, Ishida-Yamamoto A, Hashimoto Y, Iizuka H (2001) Differential phosphorylation of mitogen-activated protein kinase families by epidermal growth factor and ultraviolet B irradiation in SV40-transformed human keratinocytes. J Dermatol Sci 25:139–149

    Article  PubMed  CAS  Google Scholar 

  25. Takahashi H, Honma M, Ishida-Yamamoto A, Namikawa K, Kiyama H, Iizuka H (2001) Human cystatin A expression of keratinocytes is positively regulated by Ras/MEKK1/MKK7/JNK signal transduction pathway and regulated by Ras/Raf-1/MEK1/ERK pathway. J Biol Chem 276:36632–36638

    PubMed  CAS  Google Scholar 

  26. de Rooij J, Zwartkruis FJ, Verheijen MHG, Cool RH, Nijman SM, Wittinghofer A, Bos JL (1998) Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature 396:474–477

    ISI  Google Scholar 

  27. Iizuka H, Kishiyama K, Ohkawara A (1983) Regulation of beta-adrenergic adenylate cyclase responsiveness of pig skin epidermis by suboptimal concentrations of epinephrine. J Invest Dermatol 81:549–552

    Article  PubMed  CAS  Google Scholar 

  28. Iizuka H, Matsuo S, Tamura T, Ohkuma N (1988) Increased cholera toxin-, and forskolin-induced cyclic AMP accumulations in psoriatic involved versus uninvolved or normal human epidermis. J Invest Dermatol 91:154–157

    Article  PubMed  CAS  Google Scholar 

  29. Takahashi H, Tamura T, Tsutsui M, Iizuka H (1990) Adenylate cyclase system in fetal rat keratinizing epidermal cells (FRSK cells) and SV40-transformed human keratinocytes. J Dermatol 17:457–464

    PubMed  CAS  Google Scholar 

  30. Bechtel PJ, Beavo JA, Krebs GC (1977) Purification and characterization of catalytic subunit of skeletal muscle adenosine 3′:5′-monophosphate-dependent protein kinase. J Biol Chem 252:2691–2697

    PubMed  CAS  Google Scholar 

  31. Byus CV, Klimpel GR, Lucas DO, Russel DH (1977) Type I and type II cyclic AMP-dependent protein kinase are opposite effectors of lymphocyte mitogenesis. Nature 268:63–64

    Article  PubMed  CAS  ISI  Google Scholar 

  32. Costa M, Gerner EW, Russel DH (1978) Cyclic AMP levels and type I and II cyclic AMP-dependent protein kinase activity in synchronized cells and in quiescent cultures stimulated to proliferation. Biochim Biophys Acta 538:1-10

    PubMed  CAS  Google Scholar 

  33. Iacovelli L, Capobianco L, Salvatore L, Sallese M, D’Ancona GM, De Blasi A (2001) Thyrotropin activates mitogen-activated protein kinase pathway in FRTL-5 by a cAMP dependent mechanism. Mol Pharmacol 60:924–933

    PubMed  CAS  Google Scholar 

  34. Busca R, Abbe P, Mantoux F, Aberdam E, Peyssonnaux C, Eychene A, Ortonne JP, Ballotti R (2000) Ras mediates the cAMP-dependent activation of extracellular signal-regulated kinases (ERKs) in melanocytes. EMBO J 19:2900–2910

    Article  PubMed  CAS  ISI  Google Scholar 

  35. Wojnowski L, Zimmer AM, Beck TW, Hahn H, Berbal R, Rapp UR, Zimmer A (1997) Endothelial apoptosis in Braf-deficient mice. Nat Genet 16:293–297

    Article  PubMed  CAS  Google Scholar 

  36. Chen T, Cho RW, Stork PJ, Weber MJ (1999) Elevation of cyclic adenosine 3′,5′-monophosphate potentiates activation of mitogen activated protein kinase by growth factors in LNCaP prostate cancer cells. Cancer Res 59:213–218

    PubMed  CAS  ISI  Google Scholar 

  37. Kawasaki H, Springett GM, Mochizuki N, Toki S, Nakaya M, Matsuda M, Housman DE, Graybiel AM (1998) A family of cAMP-binding proteins that directly activate Rap1. Science 282:2275–2279

    Article  PubMed  CAS  ISI  Google Scholar 

  38. Yoshikawa K, Adachi K, Halprin KM, Levine V (1975) On the lack of response to catecholamine stimulation by the adenylate cyclase system in psoriatic lesions. Br J Dermatol 92:619–624

    PubMed  CAS  Google Scholar 

  39. Iizuka H, Adachi K, Halprin KM, Levine V (1978) Cyclic AMP accumulation in psoriatic skin: differential responses to histamine, AMP, and epinephrine by the uninvolved and involved skin. J Invest Dermatol 70:250–253

    PubMed  CAS  Google Scholar 

  40. Iizuka H, Hirokawa M, Ara M, Kajita S, Watanabe M, Ohkawara A (1986) Antipsoriatic and antimetabolic agents as stimulators of the beta-adrenergic adenylate cyclase response of epidermis. Clin Exp Dermatol 11:238–245

    PubMed  CAS  Google Scholar 

  41. Haase I, Hobbs RM, Romero R, Broad S, Watt FM (1998) A role for mitogen-activated protein kinase activation by integrins in the pathogenesis of psoriasis. J Clin Invest 108:527–536

    Google Scholar 

  42. Takahashi H, Ibe M, Nakamura S, Ishida-Yamamoto A, Hashimoto Y, Iizuka H (2002) Extracellular regulated kinase and c-Jun N-terminal kinase are activated in psoriatic involved epidermis. J Dermatol Sci 30:94–99

    Article  PubMed  CAS  Google Scholar 

  43. Falanga V, Katz MH, Alvarez A (1991) Dibutyryl cyclic AMP by itself or in combination with growth factor can stimulate or inhibit growth of human keratinocytes and dermal fibroblasts. Wounds 3:70–78

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidetoshi Takahashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takahashi, H., Honma, M., Miyauchi, Y. et al. Cyclic AMP differentially regulates cell proliferation of normal human keratinocytes through ERK activation depending on the expression pattern of B-Raf. Arch Dermatol Res 296, 74–82 (2004). https://doi.org/10.1007/s00403-004-0478-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-004-0478-z

Keywords

Navigation