Skip to main content

Advertisement

Log in

Bio-nanocomposite Polymer Hydrogels Containing Nanoparticles for Drug Delivery: a Review

  • Review
  • Published:
Regenerative Engineering and Translational Medicine Aims and scope Submit manuscript

Abstract

This review aims to study the properties of bio-nanocomposite polymer hydrogels containing nanoparticles and their application in drug delivery systems. Several biopolymer hydrogel nanoparticulate systems have been prepared and characterized in recent years, based on both natural and synthetic biopolymers, each with its own advantages and drawbacks. Among the natural biopolymers, cellulose, carboxymethyl cellulose, chitosan, carboxymethyl chitosan, alginate, starch, and gelatin have been studied extensively for preparation of bio-nanocomposite hydrogels, and from synthetic group, bio-nanocomposite hydrogels based on poly (vinyl alcohol) and poly (ethylene glycol) have been reported with various properties with respect to drug delivery. Bio-nanocomposite hydrogel has obtained significant attention in recent years as one of the most promising nanoparticulate drug delivery systems owing to their unique potentials by combining the characteristics of a hydrogel system with a nanoparticle. The field of drug delivery has achieved a considerable progress in recent years, especially with the rapid advance of nano-medicine in combination with the growing understandings of infectious and cancer diseases. Hydrogels and inorganic/organic nanoparticles are two distinguished classes of materials that have received significant attention in recent years because of their ideal characteristics in different fields including materials, chemistry, and biological sciences.

Lay Summary

The application of nanoparticles in biopolymer hydrogel matrix and their use in drug delivery field has become increasingly popular with many research groups and industries. The field of drug delivery has achieved a considerable progress in recent years, especially with the rapid advance of nano-medicine in combination with the growing understandings of infectious and cancer diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. George A, Shah PA, Shrivastav PS. Natural biodegradable polymers based nano-formulations for drug delivery: a review. Int J Pharm. 2019;561:244–64.

    Article  CAS  Google Scholar 

  2. Javanbakht S, Pooresmaeil M, Namazi H. Green one-pot synthesis of carboxymethylcellulose/Zn-based metal-organic framework/graphene oxide bio-nanocomposite as a nanocarrier for drug delivery system. Carbohydr Polym. 2019;208:294–301.

    Article  CAS  Google Scholar 

  3. Javanbakht S, Namazi H. Doxorubicin loaded carboxymethyl cellulose/graphene quantum dot nanocomposite hydrogel films as a potential anticancer drug delivery system. Mater Sci Eng C. 2018;87:50–9.

    Article  CAS  Google Scholar 

  4. Gholamali I, Yadollahi M. Doxorubicin-loaded carboxymethyl cellulose/Starch/ZnO nanocomposite hydrogel beads as an anticancer drug carrier agent. Int J Biol Macromol. 2020;160:724–35.

    Article  CAS  Google Scholar 

  5. Ullah F, Othman MBH, Javed F, Ahmad Z, Akil HM. Classification, processing and application of hydrogels: a review. Mater Sci Eng C. 2015;57:414–33.

    Article  CAS  Google Scholar 

  6. Gholamali I, Hosseini SN, Alipour E. Doxorubicin-loaded oxidized starch/poly (vinyl alcohol)/CuO bio-nanocomposite hydrogels as an anticancer drug carrier agent. Inter J polym Mater Polym Biomater, 2020.

  7. Gholamali I, Asnaashariisfahani M, Alipour E. Silver nanoparticles incorporated in pH-sensitive nanocomposite hydrogels based on carboxymethyl chitosan-poly (vinyl alcohol) for use in a drug delivery system. Regen Eng Translat Med. 2020;6:138–53.

    Article  CAS  Google Scholar 

  8. Hamidi M, Azadi A, Rafiei P. Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev. 2019;60:1638–49.

    Article  Google Scholar 

  9. Tang JD, Mura C, Lampe KJ. Stimuli-responsive, pentapeptide, nanofiber hydrogel for tissue engineering. J Am Chem Soc. 2019;141:4886–99.

    Article  CAS  Google Scholar 

  10. Khorasani MT, Joorabloo A, Adeli H, Mansoori-Moghadam Z, Moghaddam A. Design and optimization of process parameters of polyvinyl (alcohol)/ chitosan/nano zinc oxide hydrogels as wound healing materials. Carbohydr Polym. 2019;207:542–54.

    Article  CAS  Google Scholar 

  11. Liz-Marzan LM. Nanometals: formation and color. Mater Today, 2004.

  12. Ali A, Ahmed S. A review on chitosan and its nanocomposites in drug delivery. Int J Biol Macromol. 2018;109:273–86.

    Article  CAS  Google Scholar 

  13. Haraguchi K. Nanocomposite hydrogels. Curr Opin Solid State Mater Sci. 2007;11:47–54.

    Article  CAS  Google Scholar 

  14. Satarkar NS, Biswal D, Hilt JZ. Hydrogel nanocomposites: a review of applications as remote controlled biomaterials. Soft Matter. 2010;6:2364–71.

    Article  CAS  Google Scholar 

  15. Gooneh-Farahani S, Naimi-Jamal MR, Naghib SM. Stimuli-responsive grapheme incorporated multifunctional chitosan for drug delivery applications: a review. Expert Opin Drug Deliv. 2019;16:79–99.

    Article  CAS  Google Scholar 

  16. Kaur R, Kaur S. Roles of polymers in drug delivery. J Drug Deliv Ther. 2014;4(3):32–6.

    CAS  Google Scholar 

  17. Laftah WA, Hashim S, Ibrahim AN. Polymer hydrogels: a review. Polym-Plast Technol Eng. 2011;50:1475–86.

    Article  CAS  Google Scholar 

  18. Zhao F, Yao D, Guo R, Deng L, Dong A, Zhang J. Composites of polymer hydrogels and nanoparticulate systems for biomedical and pharmaceutical applications. Nanomaterial. 2015;5:2054–130.

    Article  CAS  Google Scholar 

  19. Sannino A, Demitri C, Madaghiele M. Biodegradable Cellulose-based hydrogels: design and applications. Material. 2009;2:353–73.

    Article  CAS  Google Scholar 

  20. Ma J, Li X, Bao Y. Advances in cellulose-based superabsorbent hydrogels. RSC Adv. 2015;5:59745–57.

    Article  CAS  Google Scholar 

  21. Gholamali I Stimuli-responsive polysaccharide hydrogels for biomedical applications: a review. Regen Eng Transl Med, 2019;1-24.

  22. He M, Zhao Y, Duan J, Wang Z, Chen Y, Zhang L. Fast contact of solid-liquid interface created high strength multi-layered cellulose hydrogels with controllable size. ACS Appl Mater Interfaces. 2014;6(3):1872–8.

    Article  CAS  Google Scholar 

  23. Qiu X, Hu S. “Smart” materials based on cellulose: a review of the preparations, properties, and applications. Material. 2013;6:738–81.

    Article  Google Scholar 

  24. Barkhordari S, Yadollahi M. Carboxymethyl cellulose capsulated layered double hydroxides/drug nanohybrids for Cephalexin oral delivery. Appl Clay Sci. 2016;121-122:77–85.

    Article  CAS  Google Scholar 

  25. Yadollahi M, Gholamali I, Namazi H, Aghazadeh M. Synthesis and characterization of antibacterial carboxymethyl cellulose/ZnO nanocomposite hydrogels. Int J Biol Macromol. 2015;74:136–41.

    Article  CAS  Google Scholar 

  26. Yadollahi M, Namazi H, Aghazadeh M. Antibacterial carboxymethyl cellulose/Ag nanocomposite hydrogels cross-linked with layered double hydroxides. Int J Biol Macromol. 2015;79:269–77.

    Article  CAS  Google Scholar 

  27. Yadollahi M, Gholamali I, Namazi H, Aghazadeh M. Synthesis and characterization of antibacterial carboxymethylcellulose/CuO bio-nanocomposite hydrogels. Int J Biol Macromol. 2014;73:109–14.

    Article  Google Scholar 

  28. Gholamali I. Facile Preparation of carboxymethyl cellulose/Cu bio-nanocomposite hydrogels for controlled release of Ibuprofen. Regen Eng Translat Med. 2020;6:115–24.

    Article  CAS  Google Scholar 

  29. Foroutan R, Ahmadlouydarab M, Ramavandi B, Mohammadi R. Studying the physicochemical characteristics and metals adsorptive behavior of CMC-g-HAp/Fe3O4 nanobiocomposite. J Environ Chem Eng. 2018;6:6049–58.

    Article  CAS  Google Scholar 

  30. Shen J, Song Z, Qian X, Yang F. Carboxymethyl cellulose/alum modified precipitated calcium carbonate fillers: Preparation and their use in papermaking. Carbohydr Polym. 2010;81(3):545–53.

    Article  CAS  Google Scholar 

  31. Chen Y, Long Y, Li Q, Chen X, Xu X. Synthesis of high-performance sodium carboxymethyl cellulose-based adsorbent for effective removal of methylene blue and Pb (II). Int J Biol Macromol. 2019;126:107–17.

    Article  CAS  Google Scholar 

  32. Saadiah M, Zhang D, Nagao Y, Muzakir S, Samsudin A. Reducing crystallinity on thin film based CMC/PVA hybrid polymer for application as a host in polymer electrolytes. J Non-Crystallie Solid. 2019;511:201–11.

    Article  CAS  Google Scholar 

  33. Che Nan NF, Zainuddin N, Ahmad M. Preparation and swelling study of CMC Hydrogel as potential superabsorbent. Pertanika J Sci Technol. 2019;27(1):489–98.

    Google Scholar 

  34. Behzadi Nia S, Pooresmaeil M, Namazi H. Carboxymethylcellulose/layered double hydroxides bio-nanocomposite hydrogel: a controlled amoxicillin nanocarrier for colonic bacterial infections treatment. Int J Biol Macromol. 2020;155:1401–9.

    Article  CAS  Google Scholar 

  35. Youssef AM, El-Sayed SM. Bionanocomposites materials for food packaging applications: concepts and future outlook. Carbohydr Polym. 2018;193:19–27.

    Article  CAS  Google Scholar 

  36. Rakhshaei R, Namazi H. A potential bioactive wound dressing based on carboxymethyl cellulose/ ZnO impregnated MCM-41 nanocomposite hydrogel. Mater Sci Eng C. 2017;73:456–64.

    Article  CAS  Google Scholar 

  37. Javanbakht S, Shaabani A. Carboxymethyl cellulose-based oral delivery systems. Int J Biol Macromol. 2019;133:21–9.

    Article  CAS  Google Scholar 

  38. Rasoulzadeh M, Namazi H. Carboxymethyl cellulose/graphene oxide bionanocomposite hydrogel beads as anticancer drug carrier agent. Carbohydr Polym. 2017;168:320–6.

    Article  CAS  Google Scholar 

  39. Farhoudian S, Yadollahi M, Namazi H. Facile synthesis of antibacterial chitosan/CuO bio-nanocompositehydrogel beads. Int J Biol Macromol. 2016;82:837–43.

    Article  CAS  Google Scholar 

  40. Rasoulzadehzali M, Namazi H. Facile preparation of antibacterial chitosan/graphene oxide-Ag bio-nanocomposite hydrogel beads for controlled release of doxorubicin. Int J Biol Macromol. 2018;116:54–63.

    Article  CAS  Google Scholar 

  41. Hamedi H, Moradi S, Hudson SM, Tonelli AE. Chitosan based hydrogels and their applications for drug delivery in wound dressings: a review. Carbohydr Polym. 2019;199:445–60.

    Article  Google Scholar 

  42. Khorasani MT, Joorabloo A, Moghaddam A, Shamsi H, Mansoori MZ. Incorporation of ZnO nanoparticles into heparinised polyvinyl alcohol/chitosan hydrogels for wound dressing application. Int J Biol Macromol. 2018;114:1203–15.

    Article  CAS  Google Scholar 

  43. Riva R, Ragelle H, Rieux A, Duhem N, Jerome C, Preat V. Chitosan and chitosan derivatives in drug delivery and tissue engineering. Adv Polym Sci. 2011;244:19–44.

    Article  CAS  Google Scholar 

  44. Morin-Crini N, Lichtfouse NE, Torri G, Crini G. Applications of chitosan in food, pharmaceuticals, medicine, cosmetics, agriculture, textiles, pulp and paper, biotechnology, and environmental chemistry. Environ Chem Lett. 2019;17:1667–92.

    Article  CAS  Google Scholar 

  45. Venkatesan J, Lowe B, Pallela R, Kim SK. Chitosan-based polysaccharide biomaterials. Marine Drug. 2010;8(8):2252–66.

    Article  CAS  Google Scholar 

  46. Agnihotri SA, Mallikarjuna NN, Aminabhavi TM. Recent advances on chitosan-based micro and nanoparticles in drug delivery. J Control Release. 2004;100:5–28.

    Article  CAS  Google Scholar 

  47. Gholamali I, Asnaashariisfahani M, Alipour E, Akhavan SA. In-situ synthesized carboxymethyl chitosan/poly(vinyl alcohol) bio-nanocomposite hydrogels containing nanoparticles with drug-delivery properties. Bull Mater Sci. 2020;43:264.

    Article  CAS  Google Scholar 

  48. Gholamali I, Asnaashariisfahani M, Alipour E. pH-sensitive nanocomposite hydrogels based on carboxymethyl chitosan/poly(vinyl alcohol)/zno nanoparticle with drug delivery properties. Polym Sci A. 2020;62:502–14.

    Article  CAS  Google Scholar 

  49. Gholamali I, Alipour E. Carboxymethyl chitosan/starch/CuO nanocomposite hydrogels for controlled release of amoxicillin. Regen Eng Translat Med. 2020;6:398–406.

    Article  CAS  Google Scholar 

  50. Wahid F, Wang HS, Lu YS, Zhong C, Chu LQ. Preparation, characterization and antibacterial applications of carboxymethyl chitosan/CuO nanocomposite hydrogels. Int J Biol Macromol. 2017;101:690–5.

    Article  CAS  Google Scholar 

  51. Wahid F, Yin J, Xue DD, Xue H, Lu YS, Zhong C, et al. Synthesis and characterization of antibacterial carboxymethyl Chitosan/ZnO nanocomposite hydrogels. Int J Biol Macromol. 2016;88:273–9.

    Article  CAS  Google Scholar 

  52. Wahid F, Wang HS, Zhong C, Chu LQ. Facile fabrication of moldable antibacterial carboxymethyl chitosan supramolecular hydrogels cross-linked by metal ions complexation. Carbohydr Polym. 2017;165:455–61.

    Article  CAS  Google Scholar 

  53. Ullah K, Sohail M, Murtaza G, Khan SA. Natural and synthetic materials based CMCh/PVA hydrogels for oxaliplatin delivery: fabrication, characterization, In-Vitro and In-Vivo safety profiling. Int J Biol Macromol. 2019;122:538–48.

    Article  CAS  Google Scholar 

  54. Upadhyaya L, Singh J, Agarwal V, Tewari RP. Biomedical applications of carboxymethyl chitosans. Carbohydr Polym. 2013;91:452–66.

    Article  CAS  Google Scholar 

  55. Reakasame S, Boccaccini AR. Oxidized alginate-based hydrogels for tissue engineering applications: a review. Biomacromolecule. 2018;19:3–21.

    Article  CAS  Google Scholar 

  56. Jabeen S, Maswal M, Chat OA, Rather GM, Dar AA. Rheological behavior and Ibuprofen delivery applications of pH responsive composite alginate hydrogels. Colloids Surf B: Biointerfaces. 2016;139:211–8.

    Article  CAS  Google Scholar 

  57. Clarkin OM, Wu B, Cahill PA, Brougham DF, Banerjee D, Brady SA, et al. Novel injectable gallium-based self-setting glass-alginate hydrogel composite for cardiovascular tissue engineering. Carbohydr Polym. 2019;217:152–9.

    Article  CAS  Google Scholar 

  58. He X, Ding Y, Xie W, Sun R, Hunt NC, Song J, et al. Rubidium-containing calcium alginate hydrogel for antibacterial and diabetic skin wound healing applications. ACS Biomater Sci Eng. 2019;5:4726–38.

    Article  CAS  Google Scholar 

  59. Paques JP, Van der Linden E, Van Rijn CJM, Sagis LMC. Preparation methods of alginate nanoparticles. Adv Colloid Interf Sci. 2014;209:163–71.

    Article  CAS  Google Scholar 

  60. Madzovska-Malagurski I, Vukasinovic-Sekulic M, Kostic D, Levic S. Towards antimicrobial yet bioactive Cu-alginate hydrogels. Biomed Mater. 2016;11(3):035015.

    Article  CAS  Google Scholar 

  61. Lertsutthiwong P, Noomun K, Jongaroonngamsang N, Rojsitthisak P, Nimmannit U. Preparation of alginate nanocapsules containing turmeric oil. Carbohydr Polym. 2008;74:209–14.

    Article  CAS  Google Scholar 

  62. Ismail H, Irani M, Ahmad Z. Starch-based hydrogels: present status and applications. Int J Polym Mater Polym Biomater. 2012;62:411–20.

    Article  Google Scholar 

  63. Namazi H, Hasani M, Yadollahi M. Antibacterial oxidized starch/ZnO nanocomposite hydrogel: synthesis and evaluation of its swelling behaviours in various pHs and salt solutions. Int J Biol Macromol. 2019;126:578–84.

    Article  CAS  Google Scholar 

  64. Koski C, Bose S. Effects of amylose content on the mechanical properties of starch-hydroxyapatite 3D printed bone scaffolds. Add Manufactor. 2019;30:100817.

    CAS  Google Scholar 

  65. Ali AE, Al AA. Characterization and in vitro evaluation of starch based hydrogels as carriers for colon specific drug delivery systems. Carbohydr Polym. 2009;78:725–30.

    Article  Google Scholar 

  66. Gholamali I, Hosseini SN, Alipour E, Yadollahi M. Preparation and characterization of oxidized starch/CuO nanocomposite hydrogels applicable in a drug delivery system. Starch/Stärke. 2019;71(3-4):1800118.

    Article  Google Scholar 

  67. Baghaie S, Khorasani MT, Zarrabi A, Moshtaghian J. Wound healing properties of PVA/starch/chitosan hydrogel membranes with nano zinc oxide as antibacterial wound dressing material. J Biomater Sci Polym Ed. 2017;28:2220–41.

    Article  CAS  Google Scholar 

  68. Batool S, Hussain Z, Niazi MBK, Liaqat U, Afzal M. Biogenic synthesis of silver nanoparticles and evaluation of physical and antimicrobial properties of Ag/PVA/starch nanocomposites hydrogel membranes for wound dressing application. J Drug Deliv Sci Technol. 2019;52:403–14.

    Article  CAS  Google Scholar 

  69. Hamidian H, Tavakoli T. Preparation of a new Fe3O4/starch-g-polyester nanocomposite hydrogel and a study on swelling and drug delivery properties. Carbohydr Polym. 2016;144:140–8.

    Article  CAS  Google Scholar 

  70. Pal K, Banthia AK, Majumdar DK. Preparation and characterization of polyvinyl alcohol-gelatin hydrogel membranes for biomedical applications. AAPS PharmSciTech. 2007;8:142–6.

    Article  Google Scholar 

  71. Bakravi A, Ahamadian Y, Hashemi H, Namazi H. Synthesis of gelatin-based biodegradable hydrogel nanocomposite and their application as drug delivery agent. Adv Polym Technol. 2018;37:2625–35.

    Article  CAS  Google Scholar 

  72. Ullah K, Khan SA, Murtaza G, Sohail M, Abdul Manan A, Afzal A. Gelatin-based hydrogels as potential biomaterials for colonic delivery of oxaliplatin. Int J Pharm. 2019;556:236–45.

    Article  CAS  Google Scholar 

  73. Zhao X, Lang Q, Yildirimer L, Lin ZY, Cui W, Annabi N, et al. Photocrosslinkable gelatin hydrogel for epidermal tissue engineering. Adv Healthcare Mater. 2016;5:108–18.

    Article  CAS  Google Scholar 

  74. Mishra RK, Majeed ABA, Banthia AK. Development and characterization of pectin/gelatin hydrogel membranes for wound dressing. Int J Plast Technol. 2011;15:82–95.

    Article  CAS  Google Scholar 

  75. Rakhshaei R, Namazi H, Hamishehkar H, Samadi Kafil H, Salehi R. In situ synthesized chitosan-gelatin/ZnO nanocomposite scaffold with drug delivery properties: higher antibacterial and lower cytotoxicity effects. J Appl Polym Sci. 2019;136:47590.

    Article  Google Scholar 

  76. Javanbakht S, Nezhad-Mokhtari P, Shaabani A, Arsalani N, Ghorbani M. Incorporating Cu-based metal-organic framework/drug nanohybrids into gelatin microsphere for ibuprofen oral delivery. Mater Sci Eng C. 2019;96:302–9.

    Article  CAS  Google Scholar 

  77. Shao J, Zhang Z, Zhao S, Wang S, Guo Z, Xie H, et al. Self-healing hydrogel of poly (vinyl alcohol)/agarose with robust mechanical property. Starch/Stärke. 2019;71(5-6):1800281.

    Article  Google Scholar 

  78. Zhou L, He B, Zhang F. Facile one-pot synthesis of iron oxide nanoparticles cross-linked magnetic poly (vinyl alcohol) gel beads for drug delivery. ACS Appl Mater Interfaces. 2012;4:192–9.

    Article  CAS  Google Scholar 

  79. Akhtar MF, Ranjha NM, Hanif M. Effect of ethylene glycol dimethacrylate on swelling and on metformin hydrochloride release behavior of chemically crosslinked pH–sensitive acrylic acid-polyvinyl alcohol hydrogel. Daru J Pharm Sci. 2015;23:41.

    Article  Google Scholar 

  80. Oliveira RN, Rouze R, Quilty B, Alves GG, Soares GDA, Thire RMSM, et al. Mechanical properties and in vitro characterization of polyvinyl alcohol nano-silver hydrogel wound dressings. Interface Focus. 2014;4:20130049.

    Article  CAS  Google Scholar 

  81. Ahmadian Y, Bakravi A, Hashemi H, Namazi H. Synthesis of polyvinyl alcohol/CuO nanocomposite hydrogel and its application as drug delivery agent. Polym Bull. 2019;76:1967–83.

    Article  CAS  Google Scholar 

  82. Kumar A, Han SS. PVA-based hydrogels for tissue engineering: a review. Inter J Polym Mater Polym Biomater. 2016;66:159–82.

    Article  Google Scholar 

  83. Ghasemzadeh H, Ghanaat F. Antimicrobial alginate/PVA silver nanocomposite hydrogel, synthesis and characterization. J Polym Res. 2014;21:355.

    Article  Google Scholar 

  84. Rodríguez AMO, Martínez CJP, Castro TDC, Ortega MMC, Félix DER, García JR. Nanocomposite hydrogel of poly (vinyl alcohol) and biocatalytically synthesized polypyrrole as potential system for controlled release of metoprolol. Polym Bull. 2020;77:1217–32.

    Article  Google Scholar 

  85. Swaroop K, Francis S, Somashekarappa HM. Gamma irradiation synthesis of Ag/PVA hydrogels and its antibacterial activity. Mater Today Proceed. 2016;3:1792–8.

    Article  Google Scholar 

  86. Kumaraswamy S, Mallaiah SH. Swelling and mechanical properties of radiation crosslinked Au/PVA hydrogel nanocomposites. Radiat Effect Defect Solid. 2016;171:869–78.

    Article  CAS  Google Scholar 

  87. Dsouza AA, Shegokar R. Polyethylene glycol (PEG): a versatile polymer for pharmaceutical applications. Expert Opin Drug Deliv. 2016;13:1257–75.

    Article  CAS  Google Scholar 

  88. Revzin A, Russell RJ, Yadavalli VK, Koh WG, Deister C, Hile DD, et al. Fabrication of poly (ethylene glycol) hydrogel microstructures using photolithography. Langmuir. 2001;17:5440–7.

    Article  CAS  Google Scholar 

  89. Wang X, Wang C, Wang X, Wang Y, Zhang Q, Cheng Y. A Polydopamine nanoparticle-knotted poly (ethylene glycol) hydrogel for on-demand drug delivery and chemo-photothermal therapy. Chem Mater. 2017;29:1370–6.

    Article  CAS  Google Scholar 

  90. Jovanovic Z, Krkljes A, Stojkovska J, Tomić S, Obradović B, Mišković-Stanković V, et al. Synthesis and characterization of silver/ poly (N-vinyl-2-pyrrolidone) hydrogel nanocomposite obtained by in situ radiolytic method. Radiat Phys Chem. 2011;80(11):1208–15.

    Article  CAS  Google Scholar 

  91. Giray S, Bal T, Kartal AM, Kizilel S, Erkey C. Controlled drug delivery through a novel PEG hydrogel encapsulated silica aerogel system. J Biomed Mater Res. 2012;100:1307–15.

    Article  Google Scholar 

  92. Zhu J. Bioactive modification of poly (ethylene glycol) hydrogels for tissue engineering. Biomaterial. 2010;31:4639–56.

    Article  CAS  Google Scholar 

  93. Pohlit H, Bellinghausen I, Schömer M, Heydenreich B, Saloga J, Frey H. Biodegradable pH-sensitive poly (ethylene glycol) nanocarriers for allergen encapsulation and controlled release. Biomacromolecule. 2015;16:3103–11.

    Article  CAS  Google Scholar 

  94. Rafieian S, Mirzadeh H, Mahdavi H, Masoumi ME. A review on nanocomposite hydrogels and their biomedical applications. Sci Eng Compos Mater. 2019;26:1–21.

    Article  Google Scholar 

  95. Sharma G, Thakur B, Naushad M, Kumar A, Stadler FJ, Alfadul SM, et al. Applications of nanocomposite hydrogels for biomedical engineering and environmental protection. Environ Chem Lett. 2018;16:113–46.

    Article  CAS  Google Scholar 

  96. Schexnailder P, Schmidt G. Nanocomposite polymer hydrogels. Colloid Polym Sci. 2009;287:1–11.

    Article  CAS  Google Scholar 

  97. Yadollahi M, Farhoudian S, Barkhordari S, Gholamali I, Farhadnejad H, Motasadizadeh H. Facile synthesis of chitosan/ZnO bio-nanocomposite hydrogel beads as drug delivery systems. Int J Biol Macromol. 2016;82:273–8.

    Article  CAS  Google Scholar 

  98. Song F, Li X, Wang Q, Liao L, Zhang C. Nanocomposite hydrogels and their applications in drug delivery and tissue engineering. J Biomed Nanotechnol. 2015;11:40–52.

    Article  CAS  Google Scholar 

  99. Kabiri K, Omidian H, Zohuriaan-Mehr MJ, Doroudiani S. Superabsorbent hydrogel composites and nanocomposites: a review. Polym Compos. 2011;32:277–89.

    Article  CAS  Google Scholar 

  100. Chandra Babu A, Prabhakar MN, Suresh Babu A, Mallikarjuna B, Subha MCS, Chowdoji RK. Development and characterization of semi-IPN silver nanocomposite hydrogels for antibacterial applications. Inter J Carbohyd Chem. 2013;2013:1–8.

    Article  Google Scholar 

  101. Babaladimath G, Badalamoole V. Silver nanocomposite hydrogel of Gum Ghatti with potential antibacterial property. J Macromol Sci A. 2019;56:952–9.

    Article  CAS  Google Scholar 

  102. Liu J, Sonshine DA, Shervani S, Hurt RH. Controlled release of biologically active silver from nanosilver surfaces. ACS Nano. 2010;4(11):6903–13.

    Article  CAS  Google Scholar 

  103. Bardajee GR, Hooshyar Z, Rezanezhad H. A novel and green biomaterial based silver nanocomposite hydrogel: Synthesis, characterization and antibacterial effect. J Inorg Biochem. 2012;117:367–73.

    Article  CAS  Google Scholar 

  104. Basu S, Samanta HS, Ganguly J. Green synthesis and swelling behavior of Ag-nanocomposite semi-IPN hydrogels and their drug delivery using Dolichos biflorus Linn. Soft Mater. 2018;16:7–19.

    Article  CAS  Google Scholar 

  105. Hebeish A, Hashem M, Abd El-Hady MM, Sharaf S. Development of CMC hydrogels loaded with silver nano-particles for medical applications. Carbohydr Polym. 2013;92:407–13.

    Article  CAS  Google Scholar 

  106. Bihua Xia B, Cui Q, He F, Li L. Preparation of Hybrid Hydrogel Containing Ag Nanoparticles by a Green in Situ Reduction Method. Langmuir. 2012;28:11188–94.

    Article  Google Scholar 

  107. Ranga Reddy P, Varaprasad K, Sadiku R, Ramam K, Venkata Subba Reddy G, Mohana Raju K, et al. Development of Gelatin Based Inorganic Nanocomposite Hydrogels for Inactivation of Bacteria. J Inorg Organomet Polym Mater. 2013;23:1054–60.

    Article  Google Scholar 

  108. Zhou Y, Zhao Y, Wang L, Xu L, Zhai M, Wei S. Radiation synthesis and characterization of nanosilver/gelatin/carboxymethyl chitosan hydrogel. Radiat Phys Chem. 2012;81:553–60.

    Article  CAS  Google Scholar 

  109. Krishna Rao KSV, Ramasubba Reddy P, Lee YI, Kim C. Synthesis and characterization of chitosan-PEG-Ag nanocomposites for antimicrobial application. Carbohydr Polym. 2012;87:920–5.

    Article  CAS  Google Scholar 

  110. Mohamadi Zahedi S, Mansourpanah Y. Construction of chitosan-carboxymethyl β-cyclodextrin silver nanocomposite hydrogel to improve antibacterial activity. Plastic Rubber Compos. 2018;47:273–81.

    Article  CAS  Google Scholar 

  111. Matricardi P, Di Meo C, Coviello T, Hennink WE, Alhaique F. Interpenetrating Polymer Networks polysaccharide hydrogels for drug delivery and tissue engineering. Adv Drug Deliv Rev. 2013;65:1172–87.

    Article  CAS  Google Scholar 

  112. Yadollahi M, Farhoudian S, Namazi H. One-pot synthesis of antibacterial chitosan/silver bio-nanocompositehydrogel beads as drug delivery systems. Int J Biol Macromol. 2015;79:37–43.

    Article  CAS  Google Scholar 

  113. Upadhyaya L, Singh J, Agarwal V, Tewari RP. The implications of recent advances in carboxymethyl chitosan based targeted drug delivery and tissue engineering applications. J Control Release. 2014;186:54–87.

    Article  CAS  Google Scholar 

  114. Yamada M, Foote M, Prow TW. Therapeutic gold, silver, and platinum nanoparticles. Wires Nanomed Nanobiotechnol. 2015;7:428–45.

    Article  CAS  Google Scholar 

  115. Mahmoud NN, Hikmat S, Abu Ghith D, Hajeer M, Hamadneh L, Qattan D, et al. Gold nanoparticles loaded into polymeric hydrogel for wound healing in rats: Effect of nanoparticles’ shape and surface modification. Int J Pharm. 2019;563:174–86.

    Article  Google Scholar 

  116. Khan A, Rashid R, Murtaza G, Zahra A. Gold Nanoparticles: Synthesis and Applications in Drug Delivery. Trop J Pharm Res. 2014;13(7):1169–77.

    Article  CAS  Google Scholar 

  117. Jayaramudu T, Raghavendra GM, Varaprasad K, Sadiku R, Raju KM. Development of novel biodegradable Au nanocomposite hydrogels based on wheat: For inactivation of bacteria. Carbohydr Polym. 2013;92:2193–200.

    Article  CAS  Google Scholar 

  118. Zhao F, Yao D, Guo R, Deng L, Dong A, Zhang J. Composites of Polymer Hydrogels and Nanoparticulate Systems for Biomedical and Pharmaceutical Applications. Nanomaterial. 2015;5(4):2054–130.

    Article  CAS  Google Scholar 

  119. Lin X, Han X, Wang J. In situ synthesis of easily separable Au nanoparticles catalysts based on cellulose hydrogels. Polym J. 2018;50:495–501.

    Article  CAS  Google Scholar 

  120. Chitra G, Franklin DS, Sudarsan S, Sakthivel M, Guhanathan S. Noncytotoxic silver and gold nanocomposite hydrogels with enhanced antibacterial and wound healing applications. Polym Eng Sci. 2018;58:2133–42.

    Article  CAS  Google Scholar 

  121. Lee D, Heo DN, Nah HR, Lee SJ, Ko WK, Lee JS, et al. Injectable hydrogel composite containing modified gold nanoparticles: implication in bone tissue regeneration. Inter J Nanomed. 2018;13:7019–31.

    Article  CAS  Google Scholar 

  122. Yu J, Ha W, Sun J, Shi Y. Supramolecular Hybrid Hydrogel Based on Host-Guest Interaction and Its Application in Drug Delivery. ACS Appl Mater Interfaces. 2014;6:19544–51.

    Article  CAS  Google Scholar 

  123. Chen R, Chen Q, Huo D, Ding Y, Hu Y, Jiang X. In situ formation of chitosan-gold hybrid hydrogel and its application for drug delivery. Colloid Surface B: Biointerface. 2012;97:132–7.

    Article  CAS  Google Scholar 

  124. Li T, Zhang M, Wang J, Wang T, Yao Y, Zhang X, et al. Thermosensitive Hydrogel Co-loaded with Gold Nanoparticles and Doxorubicin for Effective Chemoradiotherapy. The AAPS J. 2016;18:146–55.

    Article  CAS  Google Scholar 

  125. Li T, Zhang M, Wang J, Wang T, Yao Y, Zhang X, et al. Thermosensitive Hydrogel Co-loaded with Gold Nanoparticles and Doxorubicin for Effective Chemoradiotherapy. The AAPS J. 2016;18:146–55.

    Article  CAS  Google Scholar 

  126. Getie S, Belay A, Chandra Reddy AR, Belay Z. Synthesis and Characterizations of Zinc Oxide Nanoparticles for Antibacterial Applications. J Nanomed Nanotechnol, 2017;1-8.

  127. Mirzaei H, Darroudi M. Zinc oxide nanoparticles: Biological synthesis and biomedical applications. Ceram Int. 2017;43:907–14.

    Article  CAS  Google Scholar 

  128. Hashem M, Sharaf S, Abd El-Hady MM, Hebeish A. Synthesis and characterization of novel carboxymethylcellulose hydrogels and carboxymethylcellulolse-hydrogel-ZnO-nanocomposites. Carbohydr Polym. 2013;95:421–7.

    Article  CAS  Google Scholar 

  129. Vicentini DS, Smania A Jr, Laranjeira MCM. Chitosan/poly (vinyl alcohol) films containing ZnO nanoparticles and plasticizers. Mater Sci Eng C. 2010;30:503–8.

    Article  CAS  Google Scholar 

  130. Liu H, Wang C, Li C, Qin Y, Wang Z, Yang F, et al. A functional chitosan-based hydrogel as a wound dressing and drug delivery system in the treatment of wound healing. RSC Adv. 2018;8:7533–49.

    Article  CAS  Google Scholar 

  131. Joorabloo A, Khorasani MT, Adeli H, Mansoori-Moghadam Z, Moghaddam A. Fabrication of heparinized nano ZnO/poly(vinylalcohol)/carboxymethyl cellulose bionanocomposite hydrogels using artificial neural network for wound dressing application. J Ind Eng Chem. 2019;70:253–63.

    Article  CAS  Google Scholar 

  132. Pandey N, Shukla SK. Zinc oxide impregnated polyvinyl alcohol/polyacrylamide hydrogel for optochemical devices. Mater Today Procced. 2017;4:5687–91.

    Article  Google Scholar 

  133. Zare-Akbari Z, Farhadnejad H, Furughi-Nia B, Abedin S, Yadollahi M, Khorsand-Ghayeni M. pH-sensitive bionanocomposite hydrogel beads based on carboxymethyl cellulose/ZnO nanoparticle as drug carrier. Int J Biol Macromol. 2016;93:1317–27.

    Article  CAS  Google Scholar 

  134. Darbasizadeh B, Fatahi Y, Feyzi-barnaji B, Arabi M, Motasadizadeh H, Farhadnejad H, et al. Crosslinked-polyvinyl alcohol-carboxymethyl cellulose/ZnO nanocomposite fibrous mats containing erythromycin (PVA-CMC/ZnO-EM): fabrication, characterization and in-vitro release and anti-bacterial properties. Int J Biol Macromol. 2019;141:1137–46.

    Article  CAS  Google Scholar 

  135. Niu B, Jia J, Wang H, Chen S, Cao W, Yan J, et al. In vitro and in vivo release of diclofenac sodium-loaded sodium alginate/carboxymethyl chitosan-ZnO hydrogel beads. Int J Biol Macromol. 2019;141:1191–8.

    Article  CAS  Google Scholar 

  136. Kumaraswamy S, Babaladimath G, Badalamoole V, Mallaiah SH. Gamma irradiation synthesis and in vitro drug release studies of ZnO/PVA hydrogel nanocomposites. Adv Mater Lett. 2017;8(1):2–7.

    Google Scholar 

  137. Sun X, Liu C, Omer AM, Lu W, Zhang S, Jiang X, et al. pH-sensitive ZnO/carboxymethyl cellulose/chitosan bio-nanocomposite beads for colon-specific release of 5-fluorouracil. Int J Biol Macromol. 2019;128:468–79.

    Article  CAS  Google Scholar 

  138. Buk V, Emregul E, Emregul KC. Alginate copper oxide nano-biocomposite as a novel material for amperometric glucose biosensing. Mater Sci Eng C. 2017;74:307–14.

    Article  CAS  Google Scholar 

  139. Ahamed M, Alhadlaq HA, Majeed Khan MA, Karuppiah P, Al-Dhabi NA. Synthesis, characterization, and antimicrobial activity of copper oxide nanoparticles. J Nanomater. 2014;17:833–9.

    Google Scholar 

  140. Ezealisiji KM, Noundou S, Krause RWM. Copper oxide nano-hydrogel composite and their toxicology studies: a green chemistry approach. J Mater Sci Nanotechnol. 2019;7:1–5.

    Google Scholar 

  141. Hebeish A, Sharaf S. Novel nanocomposite hydrogel for wound dressing and other medical applications. RSC Adv. 2015;5:103036–46.

    Article  CAS  Google Scholar 

  142. Batista RA, Espitia PJP, Quintans JSS, Freitas MM, Cerqueira MA, Teixeira JA, et al. Hydrogel as an alternative structure for food packaging systems. Carbohydr Polym. 2019;205:106–16.

    Article  CAS  Google Scholar 

  143. Allen TM, Cullis PR. Drug delivery systems: entering the mainstream. Sci. 2004;303:1818–22.

    Article  CAS  Google Scholar 

  144. Konwar A, Kalita S, Kotoky J, Chowdhury D. Chitosan–iron oxide coated graphene oxide nanocomposite hydrogel: a robust and soft antimicrobial biofilm. ACS Appl Mater Interfaces. 2016;8:20625–34.

    Article  CAS  Google Scholar 

  145. Barkhordari S, Alizadeh A, Yadollahi M, Namazi H. One-pot synthesis of magnetic chitosan/iron oxide bio-nanocomposite hydrogel beads as drug delivery systems. Soft Mater, 2020.

  146. Vega-Chacón J, Arbeláez MIA, Jorge JH, Marques RFC, Jafelicci M Jr. pH-responsive poly (aspartic acid) hydrogel-coated magnetite nanoparticles for biomedical applications. Mater Sci Eng C. 2017;77:366–73.

    Article  Google Scholar 

  147. Kurdtabar M, Koutenaee RN, Bardajee GR. Synthesis and characterization of a novel pH-responsive nanocomposite hydrogel based on chitosan for targeted drug release. J Polym Res. 2018;25:119–30.

    Article  Google Scholar 

  148. Bardajee GR, Hooshyar Z. A novel biocompatible magnetic iron oxide nanoparticles/hydrogel based on poly (acrylic acid) grafted onto starch for controlled drug release. J Polym Res. 2013;20:298–313.

    Article  Google Scholar 

  149. Liang YY, Zhang LM, Jiang W, Li W. Embedding magnetic nanoparticles into polysaccharide-based hydrogels for magnetically assisted bioseparation. ChemPhyChem. 2007;12:2367–72.

    Article  Google Scholar 

  150. Amini-Fazl MS, Mohammadi R, Kheiri K. 5-Fluorouracil loaded chitosan/polyacrylic acid/Fe3O4 magnetic nanocomposite hydrogel as a potential anticancer drug delivery system. Int J Biol Macromol. 2019;132:506–13.

    Article  CAS  Google Scholar 

  151. Zhou L, He B, Zhang F. Facile one-pot synthesis of iron oxide nanoparticles cross-linked magnetic poly (vinyl alcohol) gel beads for drug delivery. ACS Appl Mater Interfaces. 2012;4:192–9.

    Article  CAS  Google Scholar 

  152. Bardajee GR, Hooshyar Z. One-pot synthesis of biocompatible superparamagnetic iron oxide nanoparticles/hydrogel based on salep: Characterization and drug delivery. Carbohydr Polym. 2014;101:741–51.

    Article  CAS  Google Scholar 

  153. Jeddi MK, Mahkam M. Magnetic nano carboxymethyl cellulose-alginate/chitosan hydrogel beads as biodegradable devices for controlled drug delivery. Int J Biol Macromol. 2019;135:829–38.

    Article  Google Scholar 

  154. Chen X, Fan M, Tan H, Ren B, Yuan G, Jia Y, et al. Magnetic and self-healing chitosan-alginate hydrogel encapsulated gelatin microspheres via covalent cross-linking for drug delivery. Mater Sci Eng C. 2019;101:619–29.

    Article  CAS  Google Scholar 

  155. Naderi Z, Azizian J, Moniri E, Farhadyar N. Synthesis and characterization of carboxymethyl cellulose/β-cyclodextrin/chitosan hydrogels and investigating the effect of magnetic nanoparticles (Fe3O4) on a novel carrier for a controlled release of methotrexate as drug delivery. J Inorg Organomet Polym Mater. 2020;30:1339–51.

    Article  CAS  Google Scholar 

  156. Naderi Z, Azizian J. Synthesis and characterization of carboxymethyl chitosan/Fe3O4 and MnFe2O4 nanocomposites hydrogels for loading and release of curcumin. J Photochem Photobiol B Biol. 2018;185:206–14.

    Article  CAS  Google Scholar 

  157. Meenach SA, Shapiro JM, Hilt JZ. Anderson KW. Characterization of PEG-iron oxide hydrogel nanocomposites for dual hyperthermia and paclitaxel delivery. J Biomater Sci Polym Ed. 2013;24:1112–26.

    Article  CAS  Google Scholar 

  158. Meenach SA, Hilt JZ, Anderson KW. Poly (ethylene glycol)-based magnetic hydrogel nanocomposites for hyperthermia cancer therapy. Acta Biomater. 2010;6:1039–46.

    Article  CAS  Google Scholar 

  159. Kesavan MP, Ayyanaar S, Lenin N, Sankarganesh M, Raja JD, Rajesh J. One pot synthesis of new poly (vinyl alcohol) blended natural polymer based magnetic hydrogel beads: Controlled natural anticancer alkaloid delivery system. J Biomed Mater Res. 2018;106:543–51.

    Article  CAS  Google Scholar 

  160. Nguyen CK, Tran NQ, Nguyen TP, Nguyen DH. Biocompatible nanomaterials based on dendrimers, hydrogels and hydrogel nanocomposites for use in biomedicine. Adv Nat Sci Nanosci Nanotechnol. 2017;8:1–10.

    Article  Google Scholar 

  161. Nguyen TH, Doan BHP, Dang DV, Nguyen CK, Tran NQ. Enzyme-mediated in situ preparation of biocompatible hydrogel composites from chitosan derivative and biphasic calcium phosphate nanoparticles for bone regeneration. Adv Nat Sci Nanosci Nanotechnol. 2014;5:1–5.

    Article  Google Scholar 

  162. Yang H, Tyagi P, Kadam RS, Holden CA, Kompella UB. A Hybrid Dendrimer Hydrogel/PLGA Nanoparticle platform sustains drug delivery for one week and antiglaucoma effects for four days following one-time topical administration. ACS Nano. 2012;6:7595–606.

    Article  CAS  Google Scholar 

  163. Wang J, He H, Cooper RC, Gui Q, Yang H. Drug-conjugated dendrimer hydrogel enables sustained drug release via a self-cleaving mechanism. Mol Pharm. 2019;16:1874–80.

    Article  CAS  Google Scholar 

  164. Huang D, Wu D. Biodegradable dendrimers for drug delivery. Mater Sci Eng C. 2018;90:713–27.

    Article  CAS  Google Scholar 

  165. Lin B, Su H, Jin R, Li D, Wu C, Jiang X, et al. Multifunctional dextran micelles as drug delivery carriers and magnetic resonance imaging probes. Sci Bull. 2015;60(14):1272–80.

    Article  CAS  Google Scholar 

  166. Kumar D. Nanoparticulate system for cancer therapy: an updated review. J Nanomed Res. 2018;7(4):262–75.

    Google Scholar 

  167. Gao Z, Lukyanov AN, Singhal A, Torchilin VP. Diacyl lipid polymer micelles as nanocarriers for poorly soluble anticancer drugs. Nano Lett. 2002;2(9):979–82.

    Article  CAS  Google Scholar 

  168. Mikhail AS, Allen C. Block copolymer micelles for delivery of cancer therapy: transport at the whole body, tissue and cellular levels. J Control Release. 2009;138:214–23.

    Article  CAS  Google Scholar 

  169. Lombardo D, Kiselev MA, Caccamo MT. Smart nanoparticles for drug delivery application: development of versatile nanocarrier platforms in biotechnology and nanomedicine. J Nanomed. 2019;2019:1–29.

    Google Scholar 

  170. Reddy N, Reddy R, Jiang Q. Crosslinking biopolymers for biomedical applications. Trends Biotechnol. 2015;33:362–9.

    Article  CAS  Google Scholar 

  171. Alvarez-Lorenzo C, Concheiro A. Intelligent drug delivery systems: polymeric micelles and hydrogels. Mini-Rev Med Chem. 2008;8:1065–74.

    Article  CAS  Google Scholar 

  172. Zhang Z, He Z, Liang R, Ma Y, Huang W, Jiang R, et al. Fabrication of a micellar supramolecular hydrogel for ocular drug delivery. Biomacromolecules. 2016;17:798–807.

    Article  CAS  Google Scholar 

  173. Tyler B, Gullotti D, Mangraviti A, Utsuki T, Brem H. Polylactic acid (PLA) controlled delivery carriers for biomedical applications. Adv Drug Deliv Rev. 2016;107:163–75.

    Article  CAS  Google Scholar 

  174. Wang J, Li S, Han Y, Guan J, Chung S, Wang C, et al. Poly (ethylene glycol)-polylactide micelles for cancer therapy. Front Pharmacol. 2018;9:202.

    Article  Google Scholar 

  175. Cho H, Gao J, Kwon GS. PEG-b-PLA micelles and PLGA-b-PEG-b-PLGA sol-gels for drug delivery. J Control Release. 2016;240:191–201.

    Article  CAS  Google Scholar 

  176. Cevc G. Lipid vesicles and other colloids as drug carriers on the skin. Adv Drug Deliv Rev. 2004;56:675–711.

    Article  CAS  Google Scholar 

  177. Xia H, Cheng Y, Xu Y, Cheng Z. Retinoic acid liposome-hydrogel: preparation, penetration through mouse skin and induction of F9 mouse teratocarcinoma stem cells differentiation. Braz J Pharm Sci. 2015;51:541–9.

    Article  Google Scholar 

  178. Thirumaleshwar S, Kulkarni PK, Gowda DV. Liposomal hydrogels: a novel drug delivery system for wound dressing. Curr Drug Therap. 2012;7:212–8.

    Article  CAS  Google Scholar 

  179. Huang S, Fu X. Naturally derived materials-based cell and drug delivery systems in skin regeneration. J Control Release. 2010;142:149–59.

    Article  CAS  Google Scholar 

  180. Pattni BS, Chupin VV, Torchilin VP. New developments in liposomal drug delivery. Chem Rev. 2015;115:10938–66.

    Article  CAS  Google Scholar 

  181. Riaz MK, Riaz MA, Zhang X, Lin C, Wong K, Chen X, et al. Surface functionalization and targeting strategies of liposomes in solid tumor therapy: a review. IJMS. 2018;19:195–222.

    Article  Google Scholar 

  182. Hatakeyama H, Akita H, Harashima H. The polyethyleneglycol dilemma: advantage and disadvantage of PEGylation of liposomes for systemic genes and nucleic acids delivery to tumors. Biol Pharm Bull. 2013;36:892–9.

    Article  CAS  Google Scholar 

  183. Elkhoury K, Koçak P, Kang A, Arab-Tehrany E, Ward JE, Shin SR. Engineering smart targeting nanovesicles and their combination with hydrogels for controlled drug delivery. Pharmaceutics. 2020;12:849–73.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The valuable help and support of Professor Eskandar Alipour, Teacher, Department of Chemistry, North Tehran Branch, Islamic Azad University is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iman Gholamali.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gholamali, I., Yadollahi, M. Bio-nanocomposite Polymer Hydrogels Containing Nanoparticles for Drug Delivery: a Review. Regen. Eng. Transl. Med. 7, 129–146 (2021). https://doi.org/10.1007/s40883-021-00207-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40883-021-00207-0

Keywords

Navigation