Skip to main content

Advertisement

Log in

Chitosan Composite Biomaterials for Bone Tissue Engineering—a Review

  • Review
  • Published:
Regenerative Engineering and Translational Medicine Aims and scope Submit manuscript

Abstract

The bone is a highly dynamic tissue with the remarkable ability to remodel and is in a continuous cycle of resorption and renewal as a result of internal mediators and external mechanical demands. Researchers have doubled their efforts to develop bone graft substitutes in order to overcome limitations that surround current bone loss treatment and the annual increase of cases dealing with bone loss and dysfunction. Chitosan has been identified by many researchers as a suitable biomaterial for bone tissue engineering applications. Chitosan holds various favourable properties, yet the mechanical strength of pure chitosan scaffolds hinders its application in bone tissue engineering. By combining chitosan with other materials, the advantageous properties can potentially be retained or even enhanced and limiting properties can be mediated. Chitosan has been blended in varying combinations with a variety of materials that include ceramics, synthetic polymers, natural polymers and other additives. This review will focus on chitosan-based biomaterials that have been developed for bone tissue engineering.

Lay Summary

The application of chitosan-based biomaterials in the bone tissue engineering field has become increasingly popular among researchers. Chitosan has many favourable properties; however, limitations have hindered its application in bone tissue engineering. To overcome these limitations, chitosan has been blended with other polymers (natural and synthetic), ceramics and other additives. These composite materials are combined to eliminate unfavourable properties and retain favourable properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Amini AR, Laurencin CT, Nukavarapu SP. Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng. 2012;40(5):363–408.

    Google Scholar 

  2. Wu S, Liu X, Yeung KW, Liu C, Yang X. Biomimetic porous scaffolds for bone tissue engineering. Mater Sci Eng R Rep. 2014;80:1–36.

    Google Scholar 

  3. Sotiropoulou P, Fountos G, Martini N, Koukou V, Michail C, Kandarakis I, et al. Bone calcium/phosphorus ratio determination using dual energy X-ray method. Phys Med. 2015;31(3):307–13.

    CAS  Google Scholar 

  4. Liu Y, Lim J, Teoh S-H. Development of clinically relevant scaffolds for vascularised bone tissue engineering. Biotechnol Adv. 2013;31(5):688–705.

    CAS  Google Scholar 

  5. Shrivats AR, McDermott MC, Hollinger JO. Bone tissue engineering: state of the union. Drug Discov Today. 2014;19(6):781–6.

    CAS  Google Scholar 

  6. Yu X, Tang X, Gohil SV, Laurencin CT. Biomaterials for bone regenerative engineering. Adv Healthc Mater. 2015;4(9):1268–85.

    CAS  Google Scholar 

  7. Li JJ, Ebied M, Xu J, Zreiqat H. Current approaches to bone tissue engineering: the interface between biology and engineering. Adv Healthc Mater. 2018;7(6):1701061.

    Google Scholar 

  8. Costa-Pinto AR, Correlo VM, Sol PC, Bhattacharya M, Charbord P, Delorme B, et al. Osteogenic differentiation of human bone marrow mesenchymal stem cells seeded on melt based chitosan scaffolds for bone tissue engineering applications. Biomacromolecules. 2009;10(8):2067–73.

    CAS  Google Scholar 

  9. Campana V, Milano G, Pagano E, Barba M, Cicione C, Salonna G, et al. Bone substitutes in orthopaedic surgery: from basic science to clinical practice. J Mater Sci Mater Med. 2014;25(10):2445–61.

    CAS  Google Scholar 

  10. Wang W, Yeung KW. Bone grafts and biomaterials substitutes for bone defect repair: a review. Bioactive Mater. 2017;2(4):224–47.

    Google Scholar 

  11. Lichte P, Pape H, Pufe T, Kobbe P, Fischer H. Scaffolds for bone healing: concepts, materials and evidence. Injury. 2011;42(6):569–73.

    CAS  Google Scholar 

  12. Turnbull G, Clarke J, Picard F, Riches P, Jia L, Han F, et al. 3D bioactive composite scaffolds for bone tissue engineering. Bioactive Mater. 2017;3(3):278–314.

    Google Scholar 

  13. Zwingenberger S, Nich C, Valladares RD, Yao Z, Stiehler M, Goodman SB. Recommendations and considerations for the use of biologics in orthopedic surgery. BioDrugs. 2012;26(4):245–56.

    CAS  Google Scholar 

  14. Tang D, Tare RS, Yang L-Y, Williams DF, Ou K-L, Oreffo RO. Biofabrication of bone tissue: approaches, challenges and translation for bone regeneration. Biomaterials. 2016;83:363–82.

    CAS  Google Scholar 

  15. Pina S, Oliveira JM, Reis RL. Natural-based nanocomposites for bone tissue engineering and regenerative medicine: a review. Adv Mater. 2015;27(7):1143–69.

    CAS  Google Scholar 

  16. Baino F, Novajra G, Vitale-Brovarone C. Bioceramics and scaffolds: a winning combination for tissue engineering. Front Bioeng Biotechnol. 2015;3:202.

    Google Scholar 

  17. Bose S, Roy M, Bandyopadhyay A. Recent advances in bone tissue engineering scaffolds. Trends Biotechnol. 2012;30(10):546–54.

    CAS  Google Scholar 

  18. Basha RY, Doble M. Design of biocomposite materials for bone tissue regeneration. Mater Sci Eng C. 2015;57:452–63.

    Google Scholar 

  19. Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005;26(27):5474–91.

    CAS  Google Scholar 

  20. Cheung RCF, Ng TB, Wong JH, Chan WY. Chitosan: an update on potential biomedical and pharmaceutical applications. Mar Drugs. 2015;13(8):5156–86.

    CAS  Google Scholar 

  21. Rodríguez-Vázquez M, Vega-Ruiz B, Ramos-Zúñiga R, Saldaña-Koppel DA, Quiñones-Olvera LF. Chitosan and its potential use as a scaffold for tissue engineering in regenerative medicine. Biomed Res Int. 2015;2015:15.

    Google Scholar 

  22. Anitha A, Sowmya S, Kumar PS, Deepthi S, Chennazhi K, Ehrlich H, et al. Chitin and chitosan in selected biomedical applications. Prog Polym Sci. 2014;39(9):1644–67.

    CAS  Google Scholar 

  23. Venkatesan J, Bhatnagar I, Kim S-K. Chitosan-alginate biocomposite containing fucoidan for bone tissue engineering. Mar Drugs. 2014;12(1):300–16.

    CAS  Google Scholar 

  24. Levengood SKL, Zhang M. Chitosan-based scaffolds for bone tissue engineering. J Mater Chem B. 2014;2(21):3161–84.

    CAS  Google Scholar 

  25. Hu Z, Zhang D-Y, Lu S-T, Li P-W, Li S-D. Chitosan-based composite materials for prospective hemostatic applications. Mar Drugs. 2018;16(8):273.

    Google Scholar 

  26. Hamed I, Özogul F, Regenstein JM. Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): a review. Trends Food Sci Technol. 2016;48:40–50.

    CAS  Google Scholar 

  27. Younes I, Rinaudo M. Chitin and chitosan preparation from marine sources. Struct Prop Appl Mar Drugs. 2015;13(3):1133–74.

    CAS  Google Scholar 

  28. Sahoo D, Sahoo S, Mohanty P, Sasmal S, Nayak P. Chitosan: a new versatile bio-polymer for various applications. Designed Monomers Polymers. 2009;12(5):377–404.

    CAS  Google Scholar 

  29. Zhang J, Xia W, Liu P, Cheng Q, Tahi T, Gu W, et al. Chitosan modification and pharmaceutical/biomedical applications. Mar Drugs. 2010;8(7):1962–87.

    CAS  Google Scholar 

  30. Pillai C, Paul W, Sharma CP. Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog Polym Sci. 2009;34(7):641–78.

    CAS  Google Scholar 

  31. Jana S, Florczyk SJ, Leung M, Zhang M. High-strength pristine porous chitosan scaffolds for tissue engineering. J Mater Chem. 2012;22(13):6291–9.

    CAS  Google Scholar 

  32. Florczyk SJ, Leung M, Li Z, Huang JI, Hopper RA, Zhang M. Evaluation of three-dimensional porous chitosan–alginate scaffolds in rat calvarial defects for bone regeneration applications. J Biomed Mater Res A. 2013;101(10):2974–83.

    Google Scholar 

  33. Shanmugapriya K, Kim H, Saravana PS, Chun B-S, Kang HW. Fabrication of multifunctional chitosan-based nanocomposite film with rapid healing and antibacterial effect for wound management. Int J Biol Macromol. 2018;118:1713–25.

    CAS  Google Scholar 

  34. Gomes S, Rodrigues G, Martins G, Roberto M, Mafra M, Henriques C, et al. In vitro and in vivo evaluation of electrospun nanofibers of PCL, chitosan and gelatin: a comparative study. Mater Sci Eng C. 2015;46:348–58.

    CAS  Google Scholar 

  35. Ahmed S, Sheikh J, Ali A. A review on chitosan centred scaffolds and their applications in tissue engineering. Int J Biol Macromol. 2018;116:849–62.

    CAS  Google Scholar 

  36. Aranaz I, Mengíbar M, Harris R, Paños I, Miralles B, Acosta N, et al. Functional characterization of chitin and chitosan. Curr Chem Biol. 2009;3(2):203–30.

    CAS  Google Scholar 

  37. Hsu S-h, Whu SW, Tsai C-L, Wu Y-H, Chen H-W, Hsieh K-H. Chitosan as scaffold materials: effects of molecular weight and degree of deacetylation. J Polym Res. 2004;11(2):141–7.

    CAS  Google Scholar 

  38. Croisier F, Jérôme C. Chitosan-based biomaterials for tissue engineering. Eur Polym J. 2013;49(4):780–92.

    CAS  Google Scholar 

  39. Tomihata K, Ikada Y. In vitro and in vivo degradation of films of chitin and its deacetylated derivatives. Biomaterials. 1997;18(7):567–75.

    CAS  Google Scholar 

  40. Ren D, Yi H, Wang W, Ma X. The enzymatic degradation and swelling properties of chitosan matrices with different degrees of N-acetylation. Carbohydr Res. 2005;340(15):2403–10.

    CAS  Google Scholar 

  41. Mauffrey C, Herbert B, Young H, Wilson M, Hake M, Stahel P. The role of biofilm on orthopaedic implants: the “Holy Grail” of post-traumatic infection management? Eur J Trauma Emerg Surg. 2016;42(4):411–6.

    CAS  Google Scholar 

  42. Perinelli DR, Fagioli L, Campana R, Lam JK, Baffone W, Palmieri GF, et al. Chitosan-based nanosystems and their exploited antimicrobial activity. Eur J Pharm Sci. 2018;117:8–20.

    CAS  Google Scholar 

  43. Ma Z, Garrido-Maestu A, Jeong KC. Application, mode of action, and in vivo activity of chitosan and its micro-and nanoparticles as antimicrobial agents: a review. Carbohydr Polym. 2017;176:257–65.

    CAS  Google Scholar 

  44. Hosseinnejad M, Jafari SM. Evaluation of different factors affecting antimicrobial properties of chitosan. Int J Biol Macromol. 2016;85:467–75.

    CAS  Google Scholar 

  45. Andres Y, Giraud L, Gerente C, Le Cloirec P. Antibacterial effects of chitosan powder: mechanisms of action. Environ Technol. 2007;28(12):1357–63.

    CAS  Google Scholar 

  46. Kong M, Chen XG, Xing K, Park HJ. Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol. 2010;144(1):51–63.

    CAS  Google Scholar 

  47. Goy RC, Morais ST, Assis OB. Evaluation of the antimicrobial activity of chitosan and its quaternized derivative on E. coli and S. aureus growth. Rev Bras. 2016;26(1):122–7.

    CAS  Google Scholar 

  48. Verlee A, Mincke S, Stevens CV. Recent developments in antibacterial and antifungal chitosan and its derivatives. Carbohydr Polym. 2017;164:268–83.

    CAS  Google Scholar 

  49. Park YJ, Lee YM, Park SN, Sheen SY, Chung CP, Lee SJ. Platelet derived growth factor releasing chitosan sponge for periodontal bone regeneration. Biomaterials. 2000;21(2):153–9.

    CAS  Google Scholar 

  50. Seol Y-J, Lee J-Y, Park Y-J, Lee Y-M, Rhyu I-C, Lee S-J, et al. Chitosan sponges as tissue engineering scaffolds for bone formation. Biotechnol Lett. 2004;26(13):1037–41.

    CAS  Google Scholar 

  51. Florencio-Silva R, da Silva Sasso GR, Sasso-Cerri E, Simões MJ, Cerri PS. Biology of bone tissue: structure, function, and factors that influence bone cells. Biomed Res Int. 2015;2015:421746.

    Google Scholar 

  52. Lima PAL, Resende CX, de Almeida Soares GD, Anselme K, Almeida LE. Preparation, characterization and biological test of 3D-scaffolds based on chitosan, fibroin and hydroxyapatite for bone tissue engineering. Mater Sci Eng C. 2013;33(6):3389–95.

    CAS  Google Scholar 

  53. Aguilar A, Zein N, Harmouch E, Hafdi B, Bornert F, Offner D, et al. Application of chitosan in bone and dental engineering. Molecules. 2019;24(16):3009.

    CAS  Google Scholar 

  54. Patrulea V, Ostafe V, Borchard G, Jordan O. Chitosan as a starting material for wound healing applications. Eur J Pharm Biopharm. 2015;97:417–26.

    CAS  Google Scholar 

  55. Rogers L, Said SS, Mequanint K. The effects of fabrication strategies on 3D scaffold morphology, porosity, and vascular smooth muscle cell response. J Biomateri Tissue Eng. 2013;3(3):300–11.

    CAS  Google Scholar 

  56. Yu C-C, Chang J-J, Lee Y-H, Lin Y-C, Wu M-H, Yang M-C, et al. Electrospun scaffolds composing of alginate, chitosan, collagen and hydroxyapatite for applying in bone tissue engineering. Mater Lett. 2013;93:133–6.

    CAS  Google Scholar 

  57. Jing X, Mi H-Y, Peng J, Peng X-F, Turng L-S. Electrospun aligned poly (propylene carbonate) microfibers with chitosan nanofibers as tissue engineering scaffolds. Carbohydr Polym. 2015;117:941–9.

    CAS  Google Scholar 

  58. Salehi M, Naseri Nosar M, Amani A, Azami M, Tavakol S, Ghanbari H. Preparation of pure PLLA, pure chitosan, and PLLA/chitosan blend porous tissue engineering scaffolds by thermally induced phase separation method and evaluation of the corresponding mechanical and biological properties. Int J Polym Mater Polym Biomater. 2015;64(13):675–82.

    CAS  Google Scholar 

  59. Zhao J, Han W, Tu M, Huan S, Zeng R, Wu H, et al. Preparation and properties of biomimetic porous nanofibrous poly (l-lactide) scaffold with chitosan nanofiber network by a dual thermally induced phase separation technique. Mater Sci Eng C. 2012;32(6):1496–502.

    CAS  Google Scholar 

  60. Kavya K, Jayakumar R, Nair S, Chennazhi KP. Fabrication and characterization of chitosan/gelatin/nSiO2 composite scaffold for bone tissue engineering. Int J Biol Macromol. 2013;59:255–63.

    CAS  Google Scholar 

  61. Sainitya R, Sriram M, Kalyanaraman V, Dhivya S, Saravanan S, Vairamani M, et al. Scaffolds containing chitosan/carboxymethyl cellulose/mesoporous wollastonite for bone tissue engineering. Int J Biol Macromol. 2015;80:481–8.

    CAS  Google Scholar 

  62. Lim JI, Park H-K. Fabrication of macroporous chitosan/poly (l-lactide) hybrid scaffolds by sodium acetate particulate-leaching method. J Porous Mater. 2012;19(3):383–7.

    CAS  Google Scholar 

  63. Alizadeh M, Abbasi F, Khoshfetrat A, Ghaleh H. Microstructure and characteristic properties of gelatin/chitosan scaffold prepared by a combined freeze-drying/leaching method. Mater Sci Eng C. 2013;33(7):3958–67.

    CAS  Google Scholar 

  64. Almeida CR, Serra T, Oliveira MI, Planell JA, Barbosa MA, Navarro M. Impact of 3-D printed PLA-and chitosan-based scaffolds on human monocyte/macrophage responses: unraveling the effect of 3-D structures on inflammation. Acta Biomater. 2014;10(2):613–22.

    CAS  Google Scholar 

  65. Chavanne P, Stevanovic S, Wüthrich A, Braissant O, Pieles U, Gruner P, Schumacher R. 3D printed chitosan/hydroxyapatite scaffolds for potential use in regenerative medicine. Biomed Tech. 2013;58(suppl 1).

  66. Demirtaş TT, Irmak G, Gümüşderelioğlu M. A bioprintable form of chitosan hydrogel for bone tissue engineering. Biofabrication. 2017;9(3):035003.

    Google Scholar 

  67. Yunos DM, Bretcanu O, Boccaccini AR. Polymer-bioceramic composites for tissue engineering scaffolds. J Mater Sci. 2008;43(13):4433.

    Google Scholar 

  68. Thein-Han W, Misra R. Biomimetic chitosan–nanohydroxyapatite composite scaffolds for bone tissue engineering. Acta Biomater. 2009;5(4):1182–97.

    CAS  Google Scholar 

  69. Nikpour M, Rabiee S, Jahanshahi M. Synthesis and characterization of hydroxyapatite/chitosan nanocomposite materials for medical engineering applications. Compos Part B. 2012;43(4):1881–6.

    CAS  Google Scholar 

  70. Tsiourvas D, Sapalidis A, Papadopoulos T. Hydroxyapatite/chitosan-based porous three-dimensional scaffolds with complex geometries. Mater Today Commun. 2016;7:59–66.

    CAS  Google Scholar 

  71. Atak BH, Buyuk B, Huysal M, Isik S, Senel M, Metzger W, et al. Preparation and characterization of amine functional nano-hydroxyapatite/chitosan bionanocomposite for bone tissue engineering applications. Carbohydr Polym. 2017;164:200–13.

    CAS  Google Scholar 

  72. Peng H, Yin Z, Liu H, Chen X, Feng B, Yuan H, et al. Electrospun biomimetic scaffold of hydroxyapatite/chitosan supports enhanced osteogenic differentiation of mMSCs. Nanotechnology. 2012;23(48):485102.

    Google Scholar 

  73. Zhang Y, Venugopal JR, El-Turki A, Ramakrishna S, Su B, Lim CT. Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomaterials. 2008;29(32):4314–22.

    CAS  Google Scholar 

  74. Frohbergh ME, Katsman A, Botta GP, Lazarovici P, Schauer CL, Wegst UG, et al. Electrospun hydroxyapatite-containing chitosan nanofibers crosslinked with genipin for bone tissue engineering. Biomaterials. 2012;33(36):9167–78.

    CAS  Google Scholar 

  75. Nazeer MA, Yilgör E, Yilgör I. Intercalated chitosan/hydroxyapatite nanocomposites: promising materials for bone tissue engineering applications. Carbohydr Polym. 2017;175:38–46.

    CAS  Google Scholar 

  76. Tang X-J, Gui L, Lü X-Y. Hard tissue compatibility of natural hydroxyapatite/chitosan composite. Biomed Mater. 2008;3(4):044115.

    Google Scholar 

  77. Bee S-L, Hamid ZA. Characterization of chicken bone waste-derived hydroxyapatite and its functionality on chitosan membrane for guided bone regeneration. Compos Part B. 2019;163:562–73.

    CAS  Google Scholar 

  78. Kashiwazaki H, Kishiya Y, Matsuda A, Yamaguchi K, Iizuka T, Tanaka J, et al. Fabrication of porous chitosan/hydroxyapatite nanocomposites: their mechanical and biological properties. Biomed Mater Eng. 2009;19(2-3):133–40.

    Google Scholar 

  79. Abueva CD, Padalhin AR, Min Y-K, Lee B-T. Preformed chitosan cryogel-biphasic calcium phosphate: a potential injectable biocomposite for pathologic fracture. J Biomater Appl. 2015;30(2):182–92.

    CAS  Google Scholar 

  80. Dessi M, Borzacchiello A, Mohamed TH, Abdel-Fattah WI, Ambrosio L. Novel biomimetic thermosensitive β-tricalcium phosphate/chitosan-based hydrogels for bone tissue engineering. J Biomed Mater Res A. 2013;101(10):2984–93.

    CAS  Google Scholar 

  81. Kucharska M, Butruk B, Walenko K, Brynk T, Ciach T. Fabrication of in-situ foamed chitosan/β-TCP scaffolds for bone tissue engineering application. Mater Lett. 2012;85:124–7.

    CAS  Google Scholar 

  82. Pighinelli L, Kucharska M, Wísniewska-Wrona M, Gruchała B, Brzoza-Malczewska K. Biodegradation study of microcrystalline chitosan and microcrystalline chitosan/β-TCP complex composites. Int J Mol Sci. 2012;13(6):7617–28.

    CAS  Google Scholar 

  83. Siddiqui N, Pramanik K. Effects of micro and nano β-TCP fillers in freeze-gelled chitosan scaffolds for bone tissue engineering. J Appl Polym Sci. 2014;131:41025.

    Google Scholar 

  84. Correia CO, Leite ÁJ, Mano JF. Chitosan/bioactive glass nanoparticles scaffolds with shape memory properties. Carbohydr Polym. 2015;123:39–45.

    CAS  Google Scholar 

  85. Peter M, Binulal N, Soumya S, Nair S, Furuike T, Tamura H, et al. Nanocomposite scaffolds of bioactive glass ceramic nanoparticles disseminated chitosan matrix for tissue engineering applications. Carbohydr Polym. 2010;79(2):284–9.

    CAS  Google Scholar 

  86. Wers E, Oudadesse H, Lefeuvre B, Merdrignac-Conanec O, Barroug A. Evaluation of the kinetic and relaxation time of gentamicin sulfate released from hybrid biomaterial Bioglass-chitosan scaffolds. Appl Surf Sci. 2015;353:200–8.

    CAS  Google Scholar 

  87. Pourhaghgouy M, Zamanian A, Shahrezaee M, Masouleh MP. Physicochemical properties and bioactivity of freeze-cast chitosan nanocomposite scaffolds reinforced with bioactive glass. Mater Sci Eng C. 2016;58:180–6.

    CAS  Google Scholar 

  88. Caridade SG, Merino EG, Alves NM, de Zea Bermudez V, Boccaccini AR, Mano JF. Chitosan membranes containing micro or nano-size bioactive glass particles: evolution of biomineralization followed by in situ dynamic mechanical analysis. J Mech Behav Biomed Mater. 2013;20:173–83.

    CAS  Google Scholar 

  89. Ravarian R, Craft M, Dehghani F. Enhancing the biological activity of chitosan and controlling the degradation by nanoscale interaction with bioglass. J Biomed Mater Res A. 2015;103(9):2898–908.

    CAS  Google Scholar 

  90. Kavitha K, Prabhu M, Rajendran V, Manivasankan P, Prabu P, Jayakumar T. Optimization of nano-titania and titania–chitosan nanocomposite to enhance biocompatibility. Curr Nanosci. 2013;9(3):308–17.

    CAS  Google Scholar 

  91. Al-Sagheer F, Merchant S. Visco-elastic properties of chitosan–titania nano-composites. Carbohydr Polym. 2011;85(2):356–62.

    CAS  Google Scholar 

  92. Kavitha K, Sutha S, Prabhu M, Rajendran V, Jayakumar T. In situ synthesized novel biocompatible titania–chitosan nanocomposites with high surface area and antibacterial activity. Carbohydr Polym. 2013;93(2):731–9.

    CAS  Google Scholar 

  93. Venugopal J, Prabhakaran MP, Zhang Y, Low S, Choon AT, Ramakrishna S. Biomimetic hydroxyapatite-containing composite nanofibrous substrates for bone tissue engineering. Philos Trans R Soc Lond Math Phys Eng Sci. 2010;368(1917):2065–81.

    CAS  Google Scholar 

  94. Wang Y-F, Wang C-Y, Wan P, Wang S-G, Wang X-M. Comparison of bone regeneration in alveolar bone of dogs on mineralized collagen grafts with two composition ratios of nano-hydroxyapatite and collagen. Regen Biomater. 2016;3(1):33–40.

    Google Scholar 

  95. Deepthi S, Venkatesan J, Kim S-K, Bumgardner JD, Jayakumar R. An overview of chitin or chitosan/nano ceramic composite scaffolds for bone tissue engineering. Int J Biol Macromol. 2016;93:1338–53.

    CAS  Google Scholar 

  96. Ogose A, Hotta T, Kawashima H, Kondo N, Gu W, Kamura T, et al. Comparison of hydroxyapatite and beta tricalcium phosphate as bone substitutes after excision of bone tumors. J Biomed Mater Res B Appl Biomater. 2005;72(1):94–101.

    Google Scholar 

  97. Wang J, Qu L, Meng X, Gao J, Li H, Wen G. Preparation and biological properties of PLLA/β-TCP composites reinforced by chitosan fibers. Biomed Mater. 2008;3(2):025004.

    Google Scholar 

  98. Zhang Y, Zhang M. Cell growth and function on calcium phosphate reinforced chitosan scaffolds. J Mater Sci Mater Med. 2004;15(3):255–60.

    CAS  Google Scholar 

  99. Fu Q, Saiz E, Rahaman MN, Tomsia AP. Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives. Mater Sci Eng C. 2011;31(7):1245–56.

    CAS  Google Scholar 

  100. Jayakumar R, Ramachandran R, Divyarani V, Chennazhi K, Tamura H, Nair S. Fabrication of chitin–chitosan/nano TiO2-composite scaffolds for tissue engineering applications. Int J Biol Macromol. 2011;48(2):336–44.

    CAS  Google Scholar 

  101. Jayakumar R, Ramachandran R, Kumar PS, Divyarani V, Srinivasan S, Chennazhi K, et al. Fabrication of chitin–chitosan/nano ZrO2 composite scaffolds for tissue engineering applications. Int J Biol Macromol. 2011;49(3):274–80.

    CAS  Google Scholar 

  102. Gautam C, Joyner J, Gautam A, Rao J, Vajtai R. Zirconia based dental ceramics: structure, mechanical properties, biocompatibility and applications. Dalton Trans. 2016;45(48):19194–215.

    CAS  Google Scholar 

  103. Sionkowska A, Płanecka A. Preparation and characterization of silk fibroin/chitosan composite sponges for tissue engineering. J Mol Liq. 2013;178:5–14.

    CAS  Google Scholar 

  104. Arpornmaeklong P, Pripatnanont P, Suwatwirote N. Properties of chitosan–collagen sponges and osteogenic differentiation of rat-bone-marrow stromal cells. Int J Oral Maxillofac Surg. 2008;37(4):357–66.

    CAS  Google Scholar 

  105. Raftery RM, Woods B, Marques AL, Moreira-Silva J, Silva TH, Cryan S-A, et al. Multifunctional biomaterials from the sea: assessing the effects of chitosan incorporation into collagen scaffolds on mechanical and biological functionality. Acta Biomater. 2016;43:160–9.

    CAS  Google Scholar 

  106. Chicatun F, Pedraza CE, Ghezzi CE, Marelli B, Kaartinen MT, McKee MD, et al. Osteoid-mimicking dense collagen/chitosan hybrid gels. Biomacromolecules. 2011;12(8):2946–56.

    CAS  Google Scholar 

  107. Miranda SC, Silva GA, Hell RC, Martins MD, Alves JB, Goes AM. Three-dimensional culture of rat BMMSCs in a porous chitosan-gelatin scaffold: a promising association for bone tissue engineering in oral reconstruction. Arch Oral Biol. 2011;56(1):1–15.

    CAS  Google Scholar 

  108. Oryan A, Alidadi S, Bigham-Sadegh A, Moshiri A. Comparative study on the role of gelatin, chitosan and their combination as tissue engineered scaffolds on healing and regeneration of critical sized bone defects: an in vivo study. J Mater Sci Mater Med. 2016;27(10):155.

    Google Scholar 

  109. Chaochai T, Miyaji H, Yoshida T, Nishida E, Furuike T, Tamura H. Preparation of chitosan-gelatin based sponge cross-linked with GlcNAc for bone tissue engineering. J Chitin Chitosan Sci. 2016;4(1):1–8.

    Google Scholar 

  110. Nieto-Suárez M, López-Quintela MA, Lazzari M. Preparation and characterization of crosslinked chitosan/gelatin scaffolds by ice segregation induced self-assembly. Carbohydr Polym. 2016;141:175–83.

    Google Scholar 

  111. Georgopoulou A, Papadogiannis F, Batsali A, Marakis J, Alpantaki K, Eliopoulos AG, et al. Chitosan/gelatin scaffolds support bone regeneration. J Mater Sci Mater Med. 2018;29(5):59.

    Google Scholar 

  112. Ng K, Wong X, Goh J, Toh S, Development of a silk-chitosan blend scaffold for bone tissue engineering, 13th International Conference on Biomedical Engineering, Springer, 2009, pp. 1381-1384.

  113. Li D-W, He F-L, He J, Deng X, Liu Y-L, Liu Y-Y, et al. From 2D to 3D: the morphology, proliferation and differentiation of MC3T3-E1 on silk fibroin/chitosan matrices. Carbohydr Polym. 2017;178:69–77.

    CAS  Google Scholar 

  114. Li D-W, Lei X, He F-L, He J, Liu Y-L, Ye Y-J, et al. Silk fibroin/chitosan scaffold with tunable properties and low inflammatory response assists the differentiation of bone marrow mesenchymal stem cells. Int J Biol Macromol. 2017;105:584–97.

    CAS  Google Scholar 

  115. Lai G-J, Shalumon K, Chen S-H, Chen J-P. Composite chitosan/silk fibroin nanofibers for modulation of osteogenic differentiation and proliferation of human mesenchymal stem cells. Carbohydr Polym. 2014;111:288–97.

    CAS  Google Scholar 

  116. Chen J-P, Chen S-H, Lai G-J. Preparation and characterization of biomimetic silk fibroin/chitosan composite nanofibers by electrospinning for osteoblasts culture. Nanoscale Res Lett. 2012;7(1):170.

    Google Scholar 

  117. Furuya DC, Costa SAD, Oliveira RCD, Ferraz HG, Pessoa Junior A, Costa SMD. Fibers obtained from alginate, chitosan and hybrid used in the development of scaffolds. Mater Res. 2017;20(2):377–86.

    CAS  Google Scholar 

  118. Li Z, Ramay HR, Hauch KD, Xiao D, Zhang M. Chitosan–alginate hybrid scaffolds for bone tissue engineering. Biomaterials. 2005;26(18):3919–28.

    CAS  Google Scholar 

  119. Florczyk SJ, Kim DJ, Wood DL, Zhang M. Influence of processing parameters on pore structure of 3D porous chitosan–alginate polyelectrolyte complex scaffolds. J Biomed Mater Res A. 2011;98(4):614–20.

    Google Scholar 

  120. Chen C, Dong L, Cheung MK. Preparation and characterization of biodegradable poly (L-lactide)/chitosan blends. Eur Polym J. 2005;41(5):958–66.

    CAS  Google Scholar 

  121. Jiao Y, Liu Z, Zhou C. Fabrication and characterization of PLLA–chitosan hybrid scaffolds with improved cell compatibility. J Biomed Mater Res A. 2007;80(4):820–5.

    Google Scholar 

  122. Prabaharan M, Rodriguez-Perez M, De Saja J, Mano J. Preparation and characterization of poly (L-lactic acid)-chitosan hybrid scaffolds with drug release capability. J Biomed Mater Res B Appl Biomater. 2007;81(2):427–34.

    CAS  Google Scholar 

  123. Mano JF, Hungerford G, Ribelles JLG. Bioactive poly (L-lactic acid)-chitosan hybrid scaffolds. Mater Sci Eng C. 2008;28(8):1356–65.

    CAS  Google Scholar 

  124. Wan Y, Fang Y, Wu H, Cao X. Porous polylactide/chitosan scaffolds for tissue engineering. J Biomed Mater Res A. 2007;80(4):776–89.

    Google Scholar 

  125. Torres-Hernández Y, Ortega-Díaz G, Téllez-Jurado L, Castrejón-Jiménez N, Altamirano-Torres A, García-Pérez B, et al. Biological compatibility of a polylactic acid composite reinforced with natural chitosan obtained from shrimp waste. Materials. 2018;11(8):1465.

    Google Scholar 

  126. Jiang T, Abdel-Fattah WI, Laurencin CT. In vitro evaluation of chitosan/poly (lactic acid-glycolic acid) sintered microsphere scaffolds for bone tissue engineering. Biomaterials. 2006;27(28):4894–903.

    CAS  Google Scholar 

  127. Boukari Y, Qutachi O, Scurr DJ, Morris AP, Doughty SW, Billa N. A dual-application poly (dl-lactic-co-glycolic) acid (PLGA)-chitosan composite scaffold for potential use in bone tissue engineering. J Biomater Sci Polym Ed. 2017;28(16):1966–83.

    CAS  Google Scholar 

  128. Van der Schueren L, Steyaert I, De Schoenmaker B, De Clerck K. Polycaprolactone/chitosan blend nanofibres electrospun from an acetic acid/formic acid solvent system. Carbohydr Polym. 2012;88(4):1221–6.

    Google Scholar 

  129. Shalumon K, Anulekha K, Chennazhi KP, Tamura H, Nair S, Jayakumar R. Fabrication of chitosan/poly (caprolactone) nanofibrous scaffold for bone and skin tissue engineering. Int J Biol Macromol. 2011;48(4):571–6.

    CAS  Google Scholar 

  130. Sharifi F, Atyabi SM, Norouzian D, Zandi M, Irani S, Bakhshi H. Polycaprolactone/carboxymethyl chitosan nanofibrous scaffolds for bone tissue engineering application. Int J Biol Macromol. 2018;115:243–8.

    CAS  Google Scholar 

  131. L.H. Chong, N.Z. Zarith, N. Sultana, Poly (Caprolactone)/chitosan-based scaffold using freeze drying technique for bone tissue engineering application, Control Conference (ASCC), 2015 10th Asian, IEEE, 2015, pp. 1-4.

  132. She H, Xiao X, Liu R. Preparation and characterization of polycaprolactone-chitosan composites for tissue engineering applications. J Mater Sci. 2007;42(19):8113–9.

    CAS  Google Scholar 

  133. Thuaksuban N, Nuntanaranont T, Pattanachot W, Suttapreyasri S, Cheung LK. Biodegradable polycaprolactone-chitosan three-dimensional scaffolds fabricated by melt stretching and multilayer deposition for bone tissue engineering: assessment of the physical properties and cellular response. Biomed Mater. 2011;6(1):015009.

    Google Scholar 

  134. Zhao J, Han W, Chen H, Tu M, Huan S, Miao G, et al. Fabrication and in vivo osteogenesis of biomimetic poly (propylene carbonate) scaffold with nanofibrous chitosan network in macropores for bone tissue engineering. J Mater Sci Mater Med. 2012;23(2):517–25.

    CAS  Google Scholar 

  135. Ma G, Yang D, Su D, Mu X, Kennedy JF, Nie J. Preparation and properties of water-soluble chitosan and polyvinyl alcohol blend films as potential bone tissue engineering matrix. Polym Adv Technol. 2010;21(3):189–95.

    CAS  Google Scholar 

  136. Ferreira AM, Gentile P, Chiono V, Ciardelli G. Collagen for bone tissue regeneration. Acta Biomater. 2012;8(9):3191–200.

    CAS  Google Scholar 

  137. Kuttappan S, Mathew D, Nair MB. Biomimetic composite scaffolds containing bioceramics and collagen/gelatin for bone tissue engineering—a mini review. Int J Biol Macromol. 2016;93:1390–401.

    CAS  Google Scholar 

  138. Jiankang H, Dichen L, Yaxiong L, Bo Y, Hanxiang Z, Qin L, et al. Preparation of chitosan–gelatin hybrid scaffolds with well-organized microstructures for hepatic tissue engineering. Acta Biomater. 2009;5(1):453–61.

    Google Scholar 

  139. Sun L, Wang S, Zhang Z, Wang X, Zhang Q. Biological evaluation of collagen–chitosan scaffolds for dermis tissue engineering. Biomed Mater. 2009;4(5):055008.

    CAS  Google Scholar 

  140. Dhandayuthapani B, Krishnan UM, Sethuraman S. Fabrication and characterization of chitosan-gelatin blend nanofibers for skin tissue engineering. J Biomed Mater Res B Appl Biomater. 2010;94(1):264–72.

    Google Scholar 

  141. Han F, Dong Y, Su Z, Yin R, Song A, Li S. Preparation, characteristics and assessment of a novel gelatin–chitosan sponge scaffold as skin tissue engineering material. Int J Pharm. 2014;476(1-2):124–33.

    CAS  Google Scholar 

  142. Baniasadi H, S A AR, Mashayekhan S. Fabrication and characterization of conductive chitosan/gelatin-based scaffolds for nerve tissue engineering. Int J Biol Macromol. 2015;74:360–6.

    CAS  Google Scholar 

  143. Wang F, Wang M, She Z, Fan K, Xu C, Chu B, et al. Collagen/chitosan based two-compartment and bi-functional dermal scaffolds for skin regeneration. Mater Sci Eng C. 2015;52:155–62.

    Google Scholar 

  144. Agarwal T, Narayan R, Maji S, Behera S, Kulanthaivel S, Maiti TK, et al. Gelatin/carboxymethyl chitosan based scaffolds for dermal tissue engineering applications. Int J Biol Macromol. 2016;93:1499–506.

    CAS  Google Scholar 

  145. Mottaghitalab F, Hosseinkhani H, Shokrgozar MA, Mao C, Yang M, Farokhi M. Silk as a potential candidate for bone tissue engineering. J Control Release. 2015;215:112–28.

    CAS  Google Scholar 

  146. Bhardwaj N, Kundu SC. Chondrogenic differentiation of rat MSCs on porous scaffolds of silk fibroin/chitosan blends. Biomaterials. 2012;33(10):2848–57.

    CAS  Google Scholar 

  147. Deng J, She R, Huang W, Dong Z, Mo G, Liu B. A silk fibroin/chitosan scaffold in combination with bone marrow-derived mesenchymal stem cells to repair cartilage defects in the rabbit knee. J Mater Sci Mater Med. 2013;24(8):2037–46.

    CAS  Google Scholar 

  148. Mirahmadi F, Tafazzoli-Shadpour M, Shokrgozar MA, Bonakdar S. Enhanced mechanical properties of thermosensitive chitosan hydrogel by silk fibers for cartilage tissue engineering. Mater Sci Eng C. 2013;33(8):4786–94.

    CAS  Google Scholar 

  149. Ma L, Yu W, Ma X. Preparation and characterization of novel sodium alginate/chitosan two ply composite membranes. J Appl Polym Sci. 2007;106(1):394–9.

    CAS  Google Scholar 

  150. Jeong SI, Krebs MD, Bonino CA, Samorezov JE, Khan SA, Alsberg E. Electrospun chitosan–alginate nanofibers with in situ polyelectrolyte complexation for use as tissue engineering scaffolds. Tissue Eng A. 2010;17(1-2):59–70.

    Google Scholar 

  151. Hyland LL, Taraban MB, Hammouda B, Bruce Yu Y. Mutually reinforced multicomponent polysaccharide networks. Biopolymers. 2011;95(12):840–51.

    CAS  Google Scholar 

  152. Wang G, Wang X, Huang L. Feasibility of chitosan-alginate (Chi-Alg) hydrogel used as scaffold for neural tissue engineering: a pilot study in vitro. Biotechnol Biotechnol Equip. 2017;31(4):766–73.

    CAS  Google Scholar 

  153. Reed S, Lau G, Delattre B, Lopez DD, Tomsia AP, Wu BM. Macro-and micro-designed chitosan-alginate scaffold architecture by three-dimensional printing and directional freezing. Biofabrication. 2016;8(1):015003.

    Google Scholar 

  154. Agarwal R, García AJ. Biomaterial strategies for engineering implants for enhanced osseointegration and bone repair. Adv Drug Deliv Rev. 2015;94:53–62.

    CAS  Google Scholar 

  155. Malheiro VN, Caridade SG, Alves NM, Mano JF. New poly (ε-caprolactone)/chitosan blend fibers for tissue engineering applications. Acta Biomater. 2010;6(2):418–28.

    CAS  Google Scholar 

  156. Lasprilla AJ, Martinez GA, Lunelli BH, Jardini AL, Maciel Filho R. Poly-lactic acid synthesis for application in biomedical devices—a review. Biotechnol Adv. 2012;30(1):321–8.

    CAS  Google Scholar 

  157. Santoro M, Shah SR, Walker JL, Mikos AG. Poly (lactic acid) nanofibrous scaffolds for tissue engineering. Adv Drug Deliv Rev. 2016;107:206–12.

    CAS  Google Scholar 

  158. Narayanan G, Vernekar VN, Kuyinu EL, Laurencin CT. Poly (lactic acid)-based biomaterials for orthopaedic regenerative engineering. Adv Drug Deliv Rev. 2016;107:247–76.

    CAS  Google Scholar 

  159. Duarte ARC, Mano JF, Reis RL. Novel 3D scaffolds of chitosan–PLLA blends for tissue engineering applications: preparation and characterization. J Supercrit Fluids. 2010;54(3):282–9.

    CAS  Google Scholar 

  160. Tajbakhsh S, Hajiali F. A comprehensive study on the fabrication and properties of biocomposites of poly (lactic acid)/ceramics for bone tissue engineering. Mater Sci Eng C. 2017;70:897–912.

    CAS  Google Scholar 

  161. Wan Y, Wu H, Yu A, Wen D. Biodegradable polylactide/chitosan blend membranes. Biomacromolecules. 2006;7(4):1362–72.

    CAS  Google Scholar 

  162. Wan Y, Wu Q, Wang S, Zhang S, Hu Z. Mechanical properties of porous polylactide/chitosan blend membranes. Macromol Mater Eng. 2007;292(5):598–607.

    CAS  Google Scholar 

  163. Gentile P, Chiono V, Carmagnola I, Hatton PV. An overview of poly (lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int J Mol Sci. 2014;15(3):3640–59.

    CAS  Google Scholar 

  164. Lanao RPF, Jonker AM, Wolke JG, Jansen JA, van Hest JC, Leeuwenburgh SC. Physicochemical properties and applications of poly (lactic-co-glycolic acid) for use in bone regeneration. Tissue Eng B Rev. 2013;19(4):380–90.

    CAS  Google Scholar 

  165. Song K, Liu Y, Macedo HM, Jiang L, Li C, Mei G, et al. Fabrication and evaluation of a sustained-release chitosan-based scaffold embedded with PLGA microspheres. Mater Sci Eng C. 2013;33(3):1506–13.

    CAS  Google Scholar 

  166. Nazemi K, Moztarzadeh F, Jalali N, Asgari S, Mozafari M. Synthesis and characterization of poly (lactic-co-glycolic) acid nanoparticles-loaded chitosan/bioactive glass scaffolds as a localized delivery system in the bone defects. Biomed Res Int. 2014;2014:898930.

    CAS  Google Scholar 

  167. Nazemi K, Azadpour P, Moztarzadeh F, Urbanska A, Mozafari M. Tissue-engineered chitosan/bioactive glass bone scaffolds integrated with PLGA nanoparticles: a therapeutic design for on-demand drug delivery. Mater Lett. 2015;138:16–20.

    CAS  Google Scholar 

  168. Hong S, Kim G. Fabrication of electrospun polycaprolactone biocomposites reinforced with chitosan for the proliferation of mesenchymal stem cells. Carbohydr Polym. 2011;83(2):940–6.

    CAS  Google Scholar 

  169. Wan Y, Wu H, Cao X, Dalai S. Compressive mechanical properties and biodegradability of porous poly (caprolactone)/chitosan scaffolds. Polym Degrad Stab. 2008;93(10):1736–41.

    CAS  Google Scholar 

  170. Costa-Júnior ES, Barbosa-Stancioli EF, Mansur AA, Vasconcelos WL, Mansur HS. Preparation and characterization of chitosan/poly (vinyl alcohol) chemically crosslinked blends for biomedical applications. Carbohydr Polym. 2009;76(3):472–81.

    Google Scholar 

  171. Mansur HS, Costa EdS Jr, Mansur AA, Barbosa-Stancioli EF. Cytocompatibility evaluation in cell-culture systems of chemically crosslinked chitosan/PVA hydrogels. Mater Sci Eng C. 2009;29(5):1574–83.

    CAS  Google Scholar 

  172. Islam A, Yasin T, Gull N, Khan SM, Munawar MA, Shafiq M, et al. Evaluation of selected properties of biocompatible chitosan/poly (vinyl alcohol) blends. Int J Biol Macromol. 2016;82:551–6.

    CAS  Google Scholar 

  173. Abraham A, Soloman P, Rejini V. Preparation of chitosan-polyvinyl alcohol blends and studies on thermal and mechanical properties. Procedia Technol. 2016;24:741–8.

    Google Scholar 

  174. Reyna-Urrutia VA, Mata-Haro V, Cauich-Rodriguez JV, Herrera-Kao WA, Cervantes-Uc JM. Effect of two crosslinking methods on the physicochemical and biological properties of the collagen-chitosan scaffolds. Eur Polym J. 2019;117:424–33.

    CAS  Google Scholar 

  175. Martínez A, Blanco M, Davidenko N, Cameron RE. Tailoring chitosan/collagen scaffolds for tissue engineering: effect of composition and different crosslinking agents on scaffold properties. Carbohydr Polym. 2015;132:606–19.

    Google Scholar 

  176. Baysal K, Aroguz AZ, Adiguzel Z, Baysal BM. Chitosan/alginate crosslinked hydrogels: preparation, characterization and application for cell growth purposes. Int J Biol Macromol. 2013;59:342–8.

    CAS  Google Scholar 

  177. Wang L, Stegemann JP. Thermogelling chitosan and collagen composite hydrogels initiated with β-glycerophosphate for bone tissue engineering. Biomaterials. 2010;31(14):3976–85.

    CAS  Google Scholar 

  178. Wang L, Stegemann JP. Glyoxal crosslinking of cell-seeded chitosan/collagen hydrogels for bone regeneration. Acta Biomater. 2011;7(6):2410–7.

    CAS  Google Scholar 

  179. Mathews S, Bhonde R, Gupta PK, Totey S. Novel biomimetic tripolymer scaffolds consisting of chitosan, collagen type 1, and hyaluronic acid for bone marrow-derived human mesenchymal stem cells-based bone tissue engineering. J Biomed Mater Res B Appl Biomater. 2014;102(8):1825–34.

    Google Scholar 

  180. Sajesh K, Jayakumar R, Nair SV, Chennazhi K. Biocompatible conducting chitosan/polypyrrole–alginate composite scaffold for bone tissue engineering. Int J Biol Macromol. 2013;62:465–71.

    CAS  Google Scholar 

  181. Pattnaik S, Nethala S, Tripathi A, Saravanan S, Moorthi A, Selvamurugan N. Chitosan scaffolds containing silicon dioxide and zirconia nano particles for bone tissue engineering. Int J Biol Macromol. 2011;49(5):1167–72.

    CAS  Google Scholar 

  182. Algul D, Sipahi H, Aydin A, Kelleci F, Ozdatli S, Yener FG. Biocompatibility of biomimetic multilayered alginate–chitosan/β-TCP scaffold for osteochondral tissue. Int J Biol Macromol. 2015;79:363–9.

    CAS  Google Scholar 

  183. Jin H-H, Lee C-H, Lee W-K, Lee J-K, Park H-C, Yoon S-Y. In-situ formation of the hydroxyapatite/chitosan-alginate composite scaffolds. Mater Lett. 2008;62(10-11):1630–3.

    CAS  Google Scholar 

  184. Jin H-H, Kim D-H, Kim T-W, Shin K-K, Jung JS, Park H-C, et al. In vivo evaluation of porous hydroxyapatite/chitosan–alginate composite scaffolds for bone tissue engineering. Int J Biol Macromol. 2012;51(5):1079–85.

    CAS  Google Scholar 

  185. He X, Liu Y, Yuan X, Lu L. Enhanced healing of rat calvarial defects with MSCs loaded on BMP-2 releasing chitosan/alginate/hydroxyapatite scaffolds. PLoS One. 2014;9(8):e104061.

    Google Scholar 

  186. Kim H-L, Jung G-Y, Yoon J-H, Han J-S, Park Y-J, Kim D-G, et al. Preparation and characterization of nano-sized hydroxyapatite/alginate/chitosan composite scaffolds for bone tissue engineering. Mater Sci Eng C. 2015;54:20–5.

    Google Scholar 

  187. Sowjanya J, Singh J, Mohita T, Sarvanan S, Moorthi A, Srinivasan N, et al. Biocomposite scaffolds containing chitosan/alginate/nano-silica for bone tissue engineering. Colloids Surf B: Biointerfaces. 2013;109:294–300.

    CAS  Google Scholar 

  188. Liuyun J, Yubao L, Chengdong X. Preparation and biological properties of a novel composite scaffold of nano-hydroxyapatite/chitosan/carboxymethyl cellulose for bone tissue engineering. J Biomed Sci. 2009;16(1):65.

    Google Scholar 

  189. Moreira CD, Carvalho SM, Mansur HS, Pereira MM. Thermogelling chitosan–collagen–bioactive glass nanoparticle hybrids as potential injectable systems for tissue engineering. Mater Sci Eng C. 2016;58:1207–16.

    CAS  Google Scholar 

  190. Pallela R, Venkatesan J, Janapala VR, Kim SK. Biophysicochemical evaluation of chitosan-hydroxyapatite-marine sponge collagen composite for bone tissue engineering. J Biomed Mater Res A. 2012;100(2):486–95.

    Google Scholar 

  191. Zugravu MV, Smith RA, Reves BT, Jennings JA, Cooper JO, Haggard WO, et al. Physical properties and in vitro evaluation of collagen–chitosan–calcium phosphate microparticle-based scaffolds for bone tissue regeneration. J Biomater Appl. 2013;28(4):566–79.

    CAS  Google Scholar 

  192. Puvaneswary S, Talebian S, Raghavendran HB, Murali MR, Mehrali M, Afifi AM, et al. Fabrication and in vitro biological activity of βTCP-chitosan-fucoidan composite for bone tissue engineering. Carbohydr Polym. 2015;134:799–807.

    CAS  Google Scholar 

  193. Peter M, Ganesh N, Selvamurugan N, Nair S, Furuike T, Tamura H, et al. Preparation and characterization of chitosan–gelatin/nanohydroxyapatite composite scaffolds for tissue engineering applications. Carbohydr Polym. 2010;80(3):687–94.

    CAS  Google Scholar 

  194. Isikli C, Hasirci V, Hasirci N. Development of porous chitosan–gelatin/hydroxyapatite composite scaffolds for hard tissue-engineering applications. J Tissue Eng Regen Med. 2012;6(2):135–43.

    CAS  Google Scholar 

  195. Sellgren KL, Ma T. E ffects of flow configuration on bone tissue engineering using human mesenchymal stem cells in 3D chitosan composite scaffolds. J Biomed Mater Res A. 2015;103(8):2509–20.

    CAS  Google Scholar 

  196. Jamalpoor Z, Mirzadeh H, Joghataei MT, Zeini D, Bagheri-Khoulenjani S, Nourani MR. Fabrication of cancellous biomimetic chitosan-based nanocomposite scaffolds applying a combinational method for bone tissue engineering. J Biomed Mater Res A. 2015;103(5):1882–92.

    Google Scholar 

  197. Ji J, Tong X, Huang X, Wang T, Lin Z, Cao Y, et al. Sphere-shaped nano-hydroxyapatite/chitosan/gelatin 3D porous scaffolds increase proliferation and osteogenic differentiation of human induced pluripotent stem cells from gingival fibroblasts. Biomed Mater. 2015;10(4):045005.

    Google Scholar 

  198. Dan Y, Liu O, Liu Y, Zhang Y-Y, Li S, Feng X-b, et al. Development of novel biocomposite scaffold of chitosan-gelatin/nanohydroxyapatite for potential bone tissue engineering applications. Nanoscale Res Lett. 2016;11(1):487.

    Google Scholar 

  199. Mishra D, Bhunia B, Banerjee I, Datta P, Dhara S, Maiti TK. Enzymatically crosslinked carboxymethyl–chitosan/gelatin/nano-hydroxyapatite injectable gels for in situ bone tissue engineering application. Mater Sci Eng C. 2011;31(7):1295–304.

    CAS  Google Scholar 

  200. Maji S, Agarwal T, Das J, Maiti TK. Development of gelatin/carboxymethyl chitosan/nano-hydroxyapatite composite 3D macroporous scaffold for bone tissue engineering applications. Carbohydr Polym. 2018;189:115–25.

    CAS  Google Scholar 

  201. Peter M, Binulal N, Nair S, Selvamurugan N, Tamura H, Jayakumar R. Novel biodegradable chitosan–gelatin/nano-bioactive glass ceramic composite scaffolds for alveolar bone tissue engineering. Chem Eng J. 2010;158(2):353–61.

    CAS  Google Scholar 

  202. Maji K, Dasgupta S, Pramanik K, Bissoyi A. Preparation and evaluation of gelatin-chitosan-nanobioglass 3D porous scaffold for bone tissue engineering. Int J Biomater. 2016;2016:1–14.

    Google Scholar 

  203. Dasgupta S, Maji K, Nandi SK. Investigating the mechanical, physiochemical and osteogenic properties in gelatin-chitosan-bioactive nanoceramic composite scaffolds for bone tissue regeneration: in vitro and in vivo. Mater Sci Eng C. 2019;94:713–28.

    CAS  Google Scholar 

  204. Renó C, Lima B, Sousa E, Bertran C, Motisuke M. Scaffolds of calcium phosphate cement containing chitosan and gelatin. Mater Res. 2013;16(6):1362–5.

    Google Scholar 

  205. Raz M, Moztarzadeh F, Kordestani SS. Synthesis, characterization and in-vitro study of chitosan/gelatin/calcium phosphate hybrid scaffolds fabricated via ion diffusion mechanism for bone tissue engineering. Silicon. 2018;10(2):277–86.

    CAS  Google Scholar 

  206. Serra I, Fradique R, Vallejo M, Correia T, Miguel S, Correia I. Production and characterization of chitosan/gelatin/β-TCP scaffolds for improved bone tissue regeneration. Mater Sci Eng C. 2015;55:592–604.

    CAS  Google Scholar 

  207. Xiao X, Liu R, Huang Q, Ding X. Preparation and characterization of hydroxyapatite/polycaprolactone–chitosan composites. J Mater Sci Mater Med. 2009;20(12):2375.

    CAS  Google Scholar 

  208. Talebian S, Mehrali M, Mohan S, Mehrali M, Khanlou HM, Kamarul T, et al. Chitosan (PEO)/bioactive glass hybrid nanofibers for bone tissue engineering. RSC Adv. 2014;4(90):49144–52.

    CAS  Google Scholar 

  209. Cai X, Tong H, Shen X, Chen W, Yan J, Hu J. Preparation and characterization of homogeneous chitosan–polylactic acid/hydroxyapatite nanocomposite for bone tissue engineering and evaluation of its mechanical properties. Acta Biomater. 2009;5(7):2693–703.

    CAS  Google Scholar 

  210. Wang F, Zhang YC, Zhou H, Guo YC, Su XX. Evaluation of in vitro and in vivo osteogenic differentiation of nano-hydroxyapatite/chitosan/poly (lactide-co-glycolide) scaffolds with human umbilical cord mesenchymal stem cells. J Biomed Mater Res A. 2014;102(3):760–8.

    Google Scholar 

  211. Zhang S, Prabhakaran MP, Qin X, Ramakrishna S. Biocomposite scaffolds for bone regeneration: role of chitosan and hydroxyapatite within poly-3-hydroxybutyrate-co-3-hydroxyvalerate on mechanical properties and in vitro evaluation. J Mech Behav Biomed Mater. 2015;51:88–98.

    Google Scholar 

  212. Mansur HS, Costa HS. Nanostructured poly (vinyl alcohol)/bioactive glass and poly (vinyl alcohol)/chitosan/bioactive glass hybrid scaffolds for biomedical applications. Chem Eng J. 2008;137(1):72–83.

    CAS  Google Scholar 

  213. Qi XN, Mou ZL, Zhang J, Zhang ZQ. Preparation of chitosan/silk fibroin/hydroxyapatite porous scaffold and its characteristics in comparison to bi-component scaffolds. J Biomed Mater Res A. 2014;102(2):366–72.

    Google Scholar 

  214. Shalumon K, Lai G-J, Chen C-H, Chen J-P. Modulation of bone-specific tissue regeneration by incorporating bone morphogenetic protein and controlling the shell thickness of silk fibroin/chitosan/nanohydroxyapatite core–shell nanofibrous membranes. ACS Appl Mater Interfaces. 2015;7(38):21170–81.

    CAS  Google Scholar 

  215. Ran J, Hu J, Sun G, Chen S, Jiang P, Shen X, et al. A novel chitosan-tussah silk fibroin/nano-hydroxyapatite composite bone scaffold platform with tunable mechanical strength in a wide range. Int J Biol Macromol. 2016;93:87–97.

    CAS  Google Scholar 

  216. Shakir M, Jolly R, Khan MS, Iram N e, Khan HM. Nano-hydroxyapatite/chitosan–starch nanocomposite as a novel bone construct: synthesis and in vitro studies. Int J Biol Macromol. 2015;80:282–92.

    CAS  Google Scholar 

  217. Shakir M, Zia I, Rehman A, Ullah R. Fabrication and characterization of nanoengineered biocompatible n-HA/chitosan-tamarind seed polysaccharide: Bio-inspired nanocomposites for bone tissue engineering. Int J Biol Macromol. 2018;111:903–16.

    CAS  Google Scholar 

  218. Heidari F, Bahrololoom ME, Vashaee D, Tayebi L. In situ preparation of iron oxide nanoparticles in natural hydroxyapatite/chitosan matrix for bone tissue engineering application. Ceram Int. 2015;41(2):3094–100.

    CAS  Google Scholar 

  219. Katti KS, Katti DR, Dash R. Synthesis and characterization of a novel chitosan/montmorillonite/hydroxyapatite nanocomposite for bone tissue engineering. Biomed Mater. 2008;3(3):034122.

    Google Scholar 

  220. Yu P, Bao R-Y, Shi X-J, Yang W, Yang M-B. Self-assembled high-strength hydroxyapatite/graphene oxide/chitosan composite hydrogel for bone tissue engineering. Carbohydr Polym. 2017;155:507–15.

    CAS  Google Scholar 

  221. Venkatesan J, Qian Z-J, Ryu B, Kumar NA, Kim S-K. Preparation and characterization of carbon nanotube-grafted-chitosan–natural hydroxyapatite composite for bone tissue engineering. Carbohydr Polym. 2011;83(2):569–77.

    CAS  Google Scholar 

  222. Venkatesan J, Pallela R, Bhatnagar I, Kim S-K. Chitosan–amylopectin/hydroxyapatite and chitosan–chondroitin sulphate/hydroxyapatite composite scaffolds for bone tissue engineering. Int J Biol Macromol. 2012;51(5):1033–42.

    CAS  Google Scholar 

  223. Przekora A, Palka K, Ginalska G. Chitosan/β-1, 3-glucan/calcium phosphate ceramics composites—novel cell scaffolds for bone tissue engineering application. J Biotechnol. 2014;182:46–53.

    Google Scholar 

  224. Przekora A, Ginalska G. Enhanced differentiation of osteoblastic cells on novel chitosan/β-1, 3-glucan/bioceramic scaffolds for bone tissue regeneration. Biomed Mater. 2015;10(1):015009.

    CAS  Google Scholar 

  225. Tripathi A, Saravanan S, Pattnaik S, Moorthi A, Partridge NC, Selvamurugan N. Bio-composite scaffolds containing chitosan/nano-hydroxyapatite/nano-copper–zinc for bone tissue engineering. Int J Biol Macromol. 2012;50(1):294–9.

    CAS  Google Scholar 

  226. Shokri S, Movahedi B, Rafieinia M, Salehi H. A new approach to fabrication of Cs/BG/CNT nanocomposite scaffold towards bone tissue engineering and evaluation of its properties. Appl Surf Sci. 2015;357:1758–64.

    CAS  Google Scholar 

  227. Aliramaji S, Zamanian A, Mozafari M. Super-paramagnetic responsive silk fibroin/chitosan/magnetite scaffolds with tunable pore structures for bone tissue engineering applications. Mater Sci Eng C. 2017;70:736–44.

    CAS  Google Scholar 

  228. Lewandowska K. Characterization of chitosan composites with synthetic polymers and inorganic additives. Int J Biol Macromol. 2015;81:159–64.

    CAS  Google Scholar 

  229. Saravanan S, Chawla A, Vairamani M, Sastry T, Subramanian K, Selvamurugan N. Scaffolds containing chitosan, gelatin and graphene oxide for bone tissue regeneration in vitro and in vivo. Int J Biol Macromol. 2017;104:1975–85.

    CAS  Google Scholar 

  230. Tao L, Zhonglong L, Ming X, Zezheng Y, Zhiyuan L, Xiaojun Z, et al. In vitro and in vivo studies of a gelatin/carboxymethyl chitosan/LAPONITE® composite scaffold for bone tissue engineering. RSC Adv. 2017;7(85):54100–10.

    CAS  Google Scholar 

  231. Unnithan AR, Sasikala ARK, Park CH, Kim CS. A unique scaffold for bone tissue engineering: an osteogenic combination of graphene oxide–hyaluronic acid–chitosan with simvastatin. J Ind Eng Chem. 2017;46:182–91.

    Google Scholar 

  232. Pangon A, Saesoo S, Saengkrit N, Ruktanonchai U, Intasanta V. Hydroxyapatite-hybridized chitosan/chitin whisker bionanocomposite fibers for bone tissue engineering applications. Carbohydr Polym. 2016;144:419–27.

    CAS  Google Scholar 

  233. Sharma C, Dinda AK, Potdar PD, Chou C-F, Mishra NC. Fabrication and characterization of novel nano-biocomposite scaffold of chitosan–gelatin–alginate–hydroxyapatite for bone tissue engineering. Mater Sci Eng C. 2016;64:416–27.

    CAS  Google Scholar 

  234. Yan H, Chen X, Feng M, Shi Z, Zhang D, Lin Q. Layer-by-layer assembly of 3D alginate-chitosan-gelatin composite scaffold incorporating bacterial cellulose nanocrystals for bone tissue engineering. Mater Lett. 2017;209:492–6.

    CAS  Google Scholar 

  235. Muthukumar T, Aravinthan A, Sharmila J, Kim NS, Kim J-H. Collagen/chitosan porous bone tissue engineering composite scaffold incorporated with Ginseng compound K. Carbohydr Polym. 2016;152:566–74.

    CAS  Google Scholar 

  236. Pon-On W, Charoenphandhu N, Teerapornpuntakit J, Thongbunchoo J, Krishnamra N, Tang I-M. Mechanical properties, biological activity and protein controlled release by poly (vinyl alcohol)–bioglass/chitosan–collagen composite scaffolds: a bone tissue engineering applications. Mater Sci Eng C. 2014;38:63–72.

    CAS  Google Scholar 

  237. Olad A, Azhar FF. The synergetic effect of bioactive ceramic and nanoclay on the properties of chitosan–gelatin/nanohydroxyapatite–montmorillonite scaffold for bone tissue engineering. Ceram Int. 2014;40(7):10061–72.

    CAS  Google Scholar 

  238. Bhowmick A, Pramanik N, Manna PJ, Mitra T, Selvaraj TKR, Gnanamani A, et al. Development of porous and antimicrobial CTS–PEG–HAP–ZnO nano-composites for bone tissue engineering. RSC Adv. 2015;5(120):99385–93.

    CAS  Google Scholar 

Download references

Funding

This paper forms part of project funded by the South African Department of Science and Technology, and forms part of the Collaborative Program for Additive Manufacturing. The financial assistance of the National Research Foundation is also hereby acknowledged. JF is supported by DST-NRF Innovation Doctoral Scholarship (Grant UID:113456). Opinions expressed and conclusions arrived at are those of the authors and not necessarily those of the funding bodies. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaundrie Fourie.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fourie, J., Taute, F., du Preez, L. et al. Chitosan Composite Biomaterials for Bone Tissue Engineering—a Review. Regen. Eng. Transl. Med. 8, 1–21 (2022). https://doi.org/10.1007/s40883-020-00187-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40883-020-00187-7

Keywords

Navigation