Skip to main content
Log in

Rigid hyperholomorphic sheaves remain rigid along twistor deformations of the underlying hyparkähler manifold

  • Research Article
  • Published:
European Journal of Mathematics Aims and scope Submit manuscript

Abstract

Let S be a K3 surface and M a smooth and projective 2n-dimensional moduli space of stable coherent sheaves on S. Over \(M\times M\) there exists a rank \(2n-2\) reflexive hyperholomorphic sheaf \(E_M\), whose fiber over a non-diagonal point \((F_1,F_2)\) is \(\mathrm{Ext}^1_S(F_1,F_2)\). The sheaf \(E_M\) can be deformed along some twistor path to a sheaf \(E_X\) over the Cartesian square \(X\times X\) of every Kähler manifold X deformation equivalent to M. We prove that \(E_X\) is infinitesimally rigid, and the isomorphism class of the Azumaya algebra is independent of the twistor path chosen. This verifies conjectures in Markman and Mehrotra (A global Torelli theorem for rigid hyperholomorphic sheaves, 2013. arXiv:1310.5782v1; Integral transforms and deformations of K3 surfaces, 2015. arXiv:1507.03108v1) and renders the results of these two papers unconditional.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The assumptions of [22, Theorem 1.4] are preserved under twistor deformations of E, by [24, Proposition 3.2] and [24, Lemma 7.6]. The proofs of [24, Proposition 3.2] and [24, Lemma 7.6] are unconditional.

References

  1. Amerik, E., Verbitsky, M.: Rational curves on hyperkähler manifolds. Int. Math. Res. Not. IMRN 2015(23), 13009–13045 (2015)

    MATH  Google Scholar 

  2. Bando, S., Siu, Y.-T.: Stable sheaves and Einstein–Hermitian metrics. In: Mabuchi, T., et al. (eds.) Geometry and Analysis on Complex Manifolds, pp. 39–50. World Scientific, River Edge (1994)

    Chapter  MATH  Google Scholar 

  3. Bayer, A., Hassett, B., Tschinkel, Yu.: Mori cones of holomorphic symplectic varieties of K3 type. Ann. Sci. Éc. Norm. Supér. (4) 48(4), 941–950 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beauville, A.: Variétés Kähleriennes dont la première classe de Chern est nulle. J. Differential Geom. 18(4), 755–782 (1984)

    Article  MATH  Google Scholar 

  5. Beauville, A.: Some remarks on Kähler manifolds with \(c_1=0\). In: Ueno, K. (ed.) Classification of Algebraic and Analytic Manifolds. Progress in Mathematics, vol. 39, pp. 1–26. Birkhäuser, Boston (1983)

    Google Scholar 

  6. Bragg, D., Lieblich, M.: Twistor spaces for supersingular K3 surfaces (2018). arXiv:1804.07282

  7. Buskin, N.: Every rational Hodge isometry between two K3 surfaces is algebraic. J. Reine Angew. Math. https://doi.org/10.1515/crelle-2017-0027

  8. Charles, F., Markman, E.: The standard conjectures for holomorphic symplectic varieties deformation equivalent to Hilbert schemes of \(K3\) surfaces. Compositio Math. 149(3), 481–494 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chevalley, C.C.: The Algebraic Theory of Spinors. Columbia University Press, New York (1954)

    Book  MATH  Google Scholar 

  10. Hitchin, N.J., Karlhede, A., Lindström, U., Roček, M.: Hyper-Kähler metrics and supersymmetry. Comm. Math. Phys. 108(4), 535–589 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  11. Huybrechts, D.: Compact Hyperkähler Manifolds: Basic results. Invent. Math. 135(1), 63–113 (1999). Erratum: Invent. Math. 152(1), 209–212 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Huybrechts, D., Lehn, M.: The Geometry of Moduli Spaces of Sheaves, 2nd edn. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  13. Huybrechts, D., Schröer, S.: The Brauer group of analytic \(K3\) surfaces. Int. Math. Res. Not. IMRN 2003(50), 2687–2698 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kobayashi, R.: Moduli of Einstein metrics on a \(K3\) surface and degenerations of type I. In: Ochiai, T. (ed.) Kähler Metric and Moduli Spaces. Advanced Studies in Pure Mathematics, 18-II, pp. 257–311. Academic Press, Boston (1990)

  15. Kodaira, K., Spencer, D.C.: On deformations of complex analytic structures, I. Ann. Math. 67(2), 328–401 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kodaira, K., Spencer, D.C.: On deformations of complex analytic structures III. Stability theorems for complex analytic structures. Ann. Math. 71(1), 43–76 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  17. MacLane, S.: Categories for the Working Mathematician. 2nd edn. Graduate Texts in Mathematics, vol. 5. Springer, New York (1998)

  18. Markman, E.: On the monodromy of moduli spaces of sheaves on \(K3\) surfaces. J. Algebraic Geom. 17(1), 29–99 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Markman, E.: Integral constraints on the monodromy group of the hyperKähler resolution of a symmetric product of a \(K3\) surface. Internat. J. Math. 21(2), 169–223 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Markman, E.: The Beauville–Bogomolov class as a characteristic class (2011). arXiv:1105.3223v3

  21. Markman, E.: A survey of Torelli and monodromy results for holomorphic-symplectic varieties. In: Ebeling, W., et al. (eds.) Complex and Differential Geometry. Springer Proceedings in Mathematics, vol. 8, pp. 257–323. Springer, Heidelberg (2011). arXiv:1101.4606

  22. Markman, E.: Naturality of the hyperholomorphic sheaf over the cartesian square of a manifold of \(K3^{[n]}\)-type (2016). arXiv:1608.05798.v1

  23. Markman, E.: On the existence of universal families of marked hyperkähler varieties (2017). arXiv:1701.08690

  24. Markman, E., Mehrotra, S.: A global Torelli theorem for rigid hyperholomorphic sheaves (2013). arXiv:1310.5782v1

  25. Markman, E., Mehrotra, S.: Integral transforms and deformations of \(K3\) surfaces (2015). arXiv:1507.03108v1

  26. Mongardi, G.: A note on the Kähler and Mori cones of hyperkähler manifolds. Asian J. Math. 19(4), 583–591 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mukai, S.: On the moduli space of bundles on \(K3\) surfaces. I. Vector Bundles on Algebraic Varieties. Tata Institute of Fundamental Research Studies in Mathematics, vol. 11, pp. 341–413. Oxford University Press, New York (1987)

    Google Scholar 

  28. Mukai, S.: Fourier functor and its application to the moduli of bundles on an abelian variety. Algebraic Geometry. Advanced Studies in Pure Mathematics, vol. 10, pp. 515–550. North-Holland, Amsterdam (1987)

    Google Scholar 

  29. O’Grady, K.G.: The weight-two Hodge structure of moduli spaces of sheaves on a \(K3\) surface. J. Algebraic Geom. 6(4), 599–644 (1997)

    MathSciNet  MATH  Google Scholar 

  30. Orlov, D.O.: Derived categories of coherent sheaves and equivalences between them. Russian Math. Surveys 58(3), 511–591 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. Siu, Y.: Extension of locally free analytic sheaves. Math. Ann. 179, 285–294 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  32. Schumacher, G., Toma, M.: Moduli of Kähler manifolds equipped with Hermite–Einstein vector bundles. Rev. Roumaine Math. Pures Appl. 38(7–8), 703–719 (1993)

    MathSciNet  MATH  Google Scholar 

  33. Verbitsky, M.: Hyperholomorphic sheaves and new examples of hyperkaehler manifolds. In: Verbitsky, M., Kaledin, D. (eds.) Hyperkähler Manifolds. Mathematical Physics (Somerville), vol. 12. International Press, Somerville (1999)

  34. Verbitsky, M.: Coherent sheaves on general \(K3\) surfaces and tori. Pure Appl. Math. Q. 4(3), Part 2, 651–714 (2008)

  35. Verbitsky, M.: Hyperholomorphic bundles over a hyper-Kähler manifold. J. Algebraic Geom. 5(4), 633–669 (1996)

    MathSciNet  MATH  Google Scholar 

  36. Verbitsky, M.: Ergodic complex structures on hyperkähler manifolds. Acta Math. 215(1), 161–182 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Verbitsky, M.: Mapping class group and a global Torelli theorem for hyperkähler manifolds. Duke Math. J. 162(15), 2929–2986 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. Verbitsky, M.: Ergodic complex structures on hyperkähler manifolds: an erratum (2017). arXiv:1708.05802

  39. Yau, S.T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampére equation I. Comm. Pure Appl. Math. 31(3), 339–411 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  40. Yoshioka, K.: Moduli spaces of stable sheaves on abelian surfaces. Math. Ann. 321(4), 817–884 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work of E. Markman was partially supported by a grant from the Simons Foundation (# 427110) and his work during March 2017 by the Max Planck Institute in Bonn. M. Verbitsky is partially supported by the Russian Academic Excellence Project ‘5-100’. S. Mehrotra acknowledges support from CONICYT by way of the grant FONDECYT Regular 1150404. This grant also partially funded the visit of E. Markman and M. Verbitsky to Pontificia Universidad Católica de Chile in March 2016. The authors thank the referee for his help in improving the exposition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukhendu Mehrotra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Markman, E., Mehrotra, S. & Verbitsky, M. Rigid hyperholomorphic sheaves remain rigid along twistor deformations of the underlying hyparkähler manifold. European Journal of Mathematics 5, 964–1012 (2019). https://doi.org/10.1007/s40879-019-00323-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40879-019-00323-w

Keywords

Mathematics Subject Classification

Navigation